scholarly journals A Toxoplasma gondii Class XIV Myosin, Expressed in Sf9 Cells with a Parasite Co-chaperone, Requires Two Light Chains for Fast Motility

2014 ◽  
Vol 289 (44) ◽  
pp. 30832-30841 ◽  
Author(s):  
Carol S. Bookwalter ◽  
Anne Kelsen ◽  
Jacqueline M. Leung ◽  
Gary E. Ward ◽  
Kathleen M. Trybus

Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.

mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Melanie J. Williams ◽  
Hernan Alonso ◽  
Marta Enciso ◽  
Saskia Egarter ◽  
Lilach Sheiner ◽  
...  

ABSTRACT Key to the virulence of apicomplexan parasites is their ability to move through tissue and to invade and egress from host cells. Apicomplexan motility requires the activity of the glideosome, a multicomponent molecular motor composed of a type XIV myosin, MyoA. Here we identify a novel glideosome component, essential light chain 2 (ELC2), and functionally characterize the two essential light chains (ELC1 and ELC2) of MyoA in Toxoplasma. We show that these proteins are functionally redundant but are important for invasion, egress, and motility. Molecular simulations of the MyoA lever arm identify a role for Ca2+ in promoting intermolecular contacts between the ELCs and the adjacent MLC1 light chain to stabilize this domain. Using point mutations predicted to ablate either the interaction with Ca2+ or the interface between the two light chains, we demonstrate their contribution to the quality, displacement, and speed of gliding Toxoplasma parasites. Our work therefore delineates the importance of the MyoA lever arm and highlights a mechanism by which this domain could be stabilized in order to promote invasion, egress, and gliding motility in apicomplexan parasites. IMPORTANCE Tissue dissemination and host cell invasion by apicomplexan parasites such as Toxoplasma are pivotal to their pathogenesis. Central to these processes is gliding motility, which is driven by an actomyosin motor, the MyoA glideosome. Others have demonstrated the importance of the MyoA glideosome for parasite motility and virulence in mice. Disruption of its function may therefore have therapeutic potential, and yet a deeper mechanistic understanding of how it works is required. Ca2+-dependent and -independent phosphorylation and the direct binding of Ca2+ to the essential light chain have been implicated in the regulation of MyoA activity. Here we identify a second essential light chain of MyoA and demonstrate the importance of both to Toxoplasma motility. We also investigate the role of Ca2+ and the MyoA regulatory site in parasite motility and identify a potential mechanism whereby binding of a divalent cation to the essential light chains could stabilize the myosin to allow productive movement.


2017 ◽  
Author(s):  
Carol S. Bookwalter ◽  
Chwen L. Tay ◽  
Rama McCrorie ◽  
Michael J. Previs ◽  
Elena B. Krementsova ◽  
...  

AbstractMotility of the apicomplexan parasite Plasmodium falciparum, the causative agent of malaria, is enabled by the glideosome, a multi-protein complex containing the class XIV myosin motor, PfMyoA. Parasite motility is necessary for invasion into host cells and for virulence. Here we show that milligram quantities of functional PfMyoA can be expressed using the baculovirus/Sf9 cell expression system, provided that a UCS (UNC-45/CRO1/She4p) family myosin co-chaperone from Plasmodium spp. is co-expressed with the heavy chain. The homologous chaperone from the apicomplexan Toxoplasma gondii does not functionally substitute. We expressed a functional full-length PfMyoA with bound myosin tail interacting protein (MTIP), the only known light chain of PfMyoA. We then identified an additional “essential” light chain (PfELC) that co-purified with PfMyoA isolated from parasite lysates. PfMyoA expressed with both light chains moved actin at ~3.8 μm/sec, more than twice that of PfMyoA-MTIP (~1.7 μm/sec), consistent with the light chain binding domain acting as a lever arm to amplify nucleotide-dependent motions in the motor domain. Surprisingly, PfMyoA moved skeletal actin or expressed P. falciparum actin at the same speed. Duty ratio estimates suggest that PfMyoA may be able to move actin at maximal speed with as few as 6 motors. Under unloaded conditions, neither phosphorylation of Ser19 of the heavy chain, phosphorylation of several Ser residues in the N-terminal extension of MTIP, or calcium affected the speed of actin motion. These studies provide the essential framework for targeting the glideosome as a potential drug target to inhibit invasion by the malaria parasite.SignificanceMotility of the apicomplexan parasite Plasmodium falciparum, the causative agent of malaria, relies on a divergent actomyosin system powered by the class XIV myosin, PfMyoA. We show that functional PfMyoA can be expressed in Sf9 cells if a Plasmodium spp. myosin chaperone is co-expressed. We identified an “essential” light chain (PfELC) that binds to PfMyoA in parasites. In vitro expression of PfMyoA heavy chain with PfELC and the known light chain MTIP produced the fastest speeds of actin movement (~3.8 μm/sec). Duty ratio estimates suggest that ~6 PfMyoA motors can move actin at maximal speed, a feature that may facilitate interaction with short, dynamic Plasmodium actin filaments. Our findings enable drug screening for myosin-based inhibitors of Plasmodium cellular invasion.


2019 ◽  
Author(s):  
Samuel Pazicky ◽  
Karthikeyan Dhamotharan ◽  
Karol Kaszuba ◽  
Haydyn Mertens ◽  
Tim Gilberger ◽  
...  

AbstractApicomplexan parasites, such as Plasmodium falciparum and Toxoplasma gondii, traverse the host tissues and invade the host cells exhibiting a specific type of motility called gliding. The molecular mechanism of gliding lies in the actin-myosin motor localized to the intermembrane space between the plasma membrane and inner membrane complex (IMC) of the parasites. Myosin A (MyoA) is a part of the glideosome, a large multi-protein complex, which is anchored in the outer membrane of the IMC. MyoA is bound to the proximal essential light chain (ELC) and distal myosin light chain (MLC1), which further interact with the glideosome associated proteins GAP40, GAP45 and GAP50. Whereas structures of several individual glideosome components and small dimeric complexes have been solved, structural information concerning the interaction of larger glideosome subunits and their role in glideosome function still remains to be elucidated. Here, we present structures of a T. gondii trimeric glideosome sub complex composed of a myosin A light chain domain with bound MLC1 and TgELC1 or TgELC2. Regardless of the differences between the secondary structure content observed for free P. falciparum PfELC and T. gondii TgELC1 or TgELC2, the proteins interact with a conserved region of TgMyoA to form structurally conserved complexes. Upon interaction, the essential light chains undergo contraction and induce α-helical structure in the myosin A C-terminus, stiffening the myosin lever arm. The complex formation is further stabilized through binding of a single calcium ion to T. gondii ELCs. Our work provides an important step towards the structural understanding of the entire glideosome and uncovering the role of its members in parasite motility and invasion.Author summaryApicomplexans, such as Toxoplasma gondii or the malaria agent Plasmodium falciparum, are small unicellular parasites that cause serious diseases in humans and other animals. These parasites move and infect the host cells by a unique type of motility called gliding. Gliding is empowered by an actin-myosin molecular motor located at the periphery of the parasites. Myosin interacts with additional proteins such as essential light chains to form the glideosome, a large protein assembly that anchors myosin in the inner membrane complex. Unfortunately, our understanding of the glideosome is insufficient because we lack the necessary structural information. Here we describe the first structures of trimeric glideosome sub complexes of T. gondii myosin A bound to two different light chain combinations, which show that T. gondii and P. falciparum form structurally conserved complexes. With an additional calcium-free complex structure, we demonstrate that calcium binding does not change the formation of the complexes, although it provides them with substantial stability. With additional data, we propose that the role of the essential light chains is to enhance myosin performance by inducing secondary structure in the C-terminus of myosin A. Our work represents an important step in unveiling the gliding mechanism of apicomplexan parasites.


1975 ◽  
Vol 67 (3) ◽  
pp. 835-851 ◽  
Author(s):  
G Blobel ◽  
B Dobberstein

Fractionation of MOPC 41 DL-1 tumors revealed that the mRNA for the light chain of immunoglobulin is localized exclusively in membrane-bound ribosomes. It was shown that the translation product of isolated light chain mRNA in a heterologous protein-synthesizing system in vitro is larger than the authentic secreted light chain; this confirms similar results from several laboratories. The synthesis in vitro of a precursor protein of the light chain is not an artifact of translation in a heterologous system, because it was shown that detached polysomes, isolated from detergent-treated rough microsomes, not only contain nascent light chains which have already been proteolytically processed in vivo but also contain unprocessed nascent light chains. In vitro completion of these nascent light chains thus resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chains, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same mol wt as the precursor of the light chain. In contrast, completion of the nascent light chains contained in rough microsomes resulted in the synthesis of only processed light chains. Taken together, these results indicate that the processing activity is present in isolated rough microsomes, that it is localized in the membrane moiety of rough microsomes, and, therefore, that it was most likely solubilized during detergent treatment used for the isolation of detached polysomes. Furthermore, these results established that processing in vivo takes place before completion of the nascent chain. The data also indicate that in vitro processing of nascent chains by rough microsomes is dependent on ribosome binding to the membrane. If the latter process is interfered with by aurintricarboxylic acid, rough microsomes also synthesize some unprocessed chains. The data presented in this paper have been interpreted in the light of a recently proposed hypothesis. This hypothesis, referred to as the signal hypothesis, is described in greater detail in the Discussion section.


2002 ◽  
Vol 49 (3) ◽  
pp. 709-719 ◽  
Author(s):  
Hanna Nieznańska ◽  
Krzysztof Nieznański ◽  
Dariusz Stepkowski

In order to compare the ability of different isoforms of myosin essential light chain to interact with actin, the effect of the latter protein on the proteolytic susceptibility of myosin light chains (MLC-1S and MLC-1V - slow specific and same as ventricular isoform) from slow skeletal muscle was examined. Actin protects both slow muscle essential light chain isoforms from papain digestion, similarly as observed for fast skeletal muscle myosin (Nieznanska et al., 1998, Biochim. Biophys. Acta 1383: 71). The effect of actin decreases as ionic strength rises above physiological values for both fast and slow skeletal myosin, confirming the ionic character of the actin-essential light chain interaction. To better understand the role of this interaction, we examined the effect of synthetic peptides spanning the 10-amino-acid N-terminal sequences of myosin light chain 1 from fast skeletal muscle (MLC-1F) (MLCFpep: KKDVKKPAAA), MLC-1S (MLCSpep: KKDVPVKKPA) and MLC-1V (MLCVpep: KPEPKKDDAK) on the myofibrillar ATPase of fast and slow skeletal muscle. In the presence of MLCFpep, we observed an about 19% increase, and in the presence of MLCSpep about 36% increase, in the myofibrillar ATPase activity of fast muscle. On the other hand, in myofibrillar preparations from slow skeletal muscle, MLCSpep as well as MLCVpep caused a lowering of the ATPase activity by about 36%. The above results suggest that MLCSpep induces opposite effects on ATPase activity, depending on the type of myofibrils, but not through its specific N-terminal sequence - which differs from other MLC N-terminal peptides. Our observations lead to the conclusion that the action of different isoforms of long essential light chain is similar in slow and fast skeletal muscle. However the interaction of essential light chains with actin leads to different physiological effects probably depending on the isoforms of other myofibrillar proteins.


2003 ◽  
Vol 71 (10) ◽  
pp. 6027-6034 ◽  
Author(s):  
R. M. O'Connor ◽  
K. Kim ◽  
F. Khan ◽  
H. D. Ward

ABSTRACT Cryptosporidium parvum is a waterborne enteric coccidian that causes diarrheal disease in a wide range of hosts. Development of successful therapies is hampered by the inability to culture the parasite and the lack of a transfection system for genetic manipulation. The glycoprotein products of the Cpgp40/15 gene, gp40 and gp15, are involved in C. parvum sporozoite attachment to and invasion of host cells and, as such, may be good targets for anticryptosporidial therapies. However, the function of these antigens appears to be dependent on the presence of multiple O-linked α-N-acetylgalactosamine (α-GalNAc) determinants. A eukaryotic expression system that would produce proteins bearing glycosylation patterns similar to those found on the native C. parvum glycoproteins would greatly facilitate the molecular and functional characterization of these antigens. As a unique approach to this problem, the Cpgp40/15 gene was transiently expressed in Toxoplasma gondii, and the expressed recombinant glycoproteins were characterized. Antisera to gp40 and gp15 reacted with the surface membranes of tachyzoites expressing the Cpgp40/15 construct, and this reactivity colocalized with that of antiserum to the T. gondii surface protein SAG1. Surface membrane localization was dependent on the presence of the glycophosphatidylinositol anchor attachment site present in the gp15 coding sequence. The presence of terminal O-linked α-GalNAc determinants on the T. gondii recombinant gp40 was confirmed by reactivity with Helix pomatia lectin and the monoclonal antibody 4E9, which recognizes α-GalNAc residues, and digestion with α-N-acetylgalactosaminidase. In addition to appropriate localization and glycosylation, T. gondii apparently processes the gp40/15 precursor into the gp40 and gp15 component glycopolypeptides, albeit inefficiently. These results suggest that a surrogate system using T. gondii for the study of Cryptosporidium biology may be useful.


2019 ◽  
Author(s):  
Simona Seizova ◽  
Alexandra L Garnham ◽  
Michael J Coffey ◽  
Lachlan W Whitehead ◽  
Kelly L Rogers ◽  
...  

2012 ◽  
Vol 7 (8) ◽  
pp. 360-365
Author(s):  
Eric Y. Denkers ◽  
Barbara A. Butcher
Keyword(s):  

Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 919-923 ◽  
Author(s):  
M Wrightham ◽  
AL Tutt ◽  
MJ Glennie ◽  
TJ Hamblin ◽  
GT Stevenson ◽  
...  

Abstract Tumor cells from patients with B cell neoplasms often secrete small amounts of free monoclonal light chains that can be found in the urine. Such tumor-derived light chains of the lambda type from a patient with typical chronic lymphocytic leukemia have been used to raise mouse monoclonal antibodies (MoAbs). A hybridoma-secreting antibody that recognized the idiotypic lambda chain but not normal lambda chains by a preliminary screen but which also reacted with idiotypic IgM from the patient's tumor cells was selected. This MoAb in fact recognized 1 in 20 X 10(3) molecules of pooled normal lambda chains, thus establishing its specificity for a private idiotypic determinant. It failed to give a detectable reaction with normal IgM, normal serum, or a panel of IgM paraproteins. The antibody bound to the patient's neoplastic B cells but not to normal tonsillar cells. The site of binding of the antibody to idiotypic IgM is clearly separate from that of another MoAb specific for idiotypic determinants on heavy plus light chains, since the two showed additive binding curves. The determinant also appeared to be less available in dimeric lambda chains than in monomeric lambda chains or in idiotypic IgM. Antibodies to idiotypic determinants on light chains show some technical advantages and should be useful for monitoring and possibly treating B cell tumors, either alone or together with the more conventional anti-idiotypic antibodies that usually recognize the heavy and light chain combination.


Sign in / Sign up

Export Citation Format

Share Document