scholarly journals Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation

2015 ◽  
Vol 290 (34) ◽  
pp. 20761-20773 ◽  
Author(s):  
Shaotong Zhu ◽  
Steven B. Vik

Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441–445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu2+ ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50–90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10–20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus.

2017 ◽  
Vol 114 (48) ◽  
pp. 12737-12742 ◽  
Author(s):  
Justin G. Fedor ◽  
Andrew J. Y. Jones ◽  
Andrea Di Luca ◽  
Ville R. I. Kaila ◽  
Judy Hirst

Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4–7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion.


2013 ◽  
Vol 41 (5) ◽  
pp. 1265-1271 ◽  
Author(s):  
Leonid A. Sazanov ◽  
Rozbeh Baradaran ◽  
Rouslan G. Efremov ◽  
John M. Berrisford ◽  
Gurdeep Minhas

Complex I (NADH:ubiquinone oxidoreductase) is central to cellular energy production, being the first and largest enzyme of the respiratory chain in mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the inner mitochondrial membrane and is involved in a wide range of human neurodegenerative disorders. Mammalian complex I is composed of 44 different subunits, whereas the ‘minimal’ bacterial version contains 14 highly conserved ‘core’ subunits. The L-shaped assembly consists of hydrophilic and membrane domains. We have determined all known atomic structures of complex I, starting from the hydrophilic domain of Thermus thermophilus enzyme (eight subunits, nine Fe–S clusters), followed by the membrane domains of the Escherichia coli (six subunits, 55 transmembrane helices) and T. thermophilus (seven subunits, 64 transmembrane helices) enzymes, and finally culminating in a recent crystal structure of the entire intact complex I from T. thermophilus (536 kDa, 16 subunits, nine Fe–S clusters, 64 transmembrane helices). The structure suggests an unusual and unique coupling mechanism via long-range conformational changes. Determination of the structure of the entire complex was possible only through this step-by-step approach, building on from smaller subcomplexes towards the entire assembly. Large membrane proteins are notoriously difficult to crystallize, and so various non-standard and sometimes counterintuitive approaches were employed in order to achieve crystal diffraction to high resolution and solve the structures. These steps, as well as the implications from the final structure, are discussed in the present review.


2008 ◽  
Vol 36 (5) ◽  
pp. 971-975 ◽  
Author(s):  
Thomas Pohl ◽  
Daniel Schneider ◽  
Ruth Hielscher ◽  
Stefan Stolpe ◽  
Katerina Dörner ◽  
...  

The energy-converting NADH:ubiquinone oxidoreductase, also known as respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex consisting of a peripheral and a membrane arm. The peripheral arm contains all known cofactors and the NADH-binding site, whereas the membrane arm has to be involved in proton translocation. Owing to this, a conformation-linked mechanism for redox-driven proton translocation is discussed. By means of electron microscopy, we show that both arms of the Escherichia coli complex I are widened after the addition of NADH but not of NADPH. NADH-induced conformational changes were also detected in solution: ATR-FTIR (attenuated total reflection Fourier-transform infrared) of the soluble NADH dehydrogenase fragment of the complex indicates protein re-arrangements induced by the addition of NADH. EPR spectroscopy of surface mutants of the complex containing a covalently bound spin label at distinct positions demonstrates NADH-dependent conformational changes in both arms of the complex.


1991 ◽  
Vol 277 (1) ◽  
pp. 11-15 ◽  
Author(s):  
A Dupuis ◽  
J M Skehel ◽  
J E Walker

The sequence of a 19 kDa subunit of NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria has been determined by a new strategy based on the polymerase chain reaction. The subunits of the enzyme were resolved in a polyacrylamide gel by two-dimensional isoelectric focusing and electrophoresis under denaturing conditions, transferred to a poly(vinylidene difluoride) membrane, and the N-terminal sequence was determined on the stained 19 kDa protein up to residue 27. This information was used to design two mixed oligonucleotide primers and a mixed oligonucleotide probe. With total bovine heart cDNA as template, overlapping cDNAs extending to sequences corresponding to both the 5′ and 3′ extremities of the mRNA coding for the 19 kDa subunit were synthesized in three polymerase chain reactions. These cDNAs were cloned and sequenced and encode a 171-amino-acid mature protein preceded by a methionine residue. The mature protein contains eight cysteine residues spaced at regular intervals through the protein, but the cysteine-rich motifs that are often associated with tetranuclear or binuclear centres in other proteins are not present. However, all eight cysteine residues are strictly conserved in a related protein from Neurospora crassa, suggesting that they have structural and/or functional significance in complex I.


2021 ◽  
Vol 9 ◽  
Author(s):  
Franziska Nuber ◽  
Luca Mérono ◽  
Sabrina Oppermann ◽  
Johannes Schimpf ◽  
Daniel Wohlwend ◽  
...  

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, plays a major role in cellular energy metabolism. It couples NADH oxidation and quinone reduction with the translocation of protons across the membrane, thus contributing to the protonmotive force. Complex I has an overall L-shaped structure with a peripheral arm catalyzing electron transfer and a membrane arm engaged in proton translocation. Although both reactions are arranged spatially separated, they are tightly coupled by a mechanism that is not fully understood. Using redox-difference UV-vis spectroscopy, an unknown redox component was identified in Escherichia coli complex I as reported earlier. A comparison of its spectrum with those obtained for different quinone species indicates features of a quinol anion. The re-oxidation kinetics of the quinol anion intermediate is significantly slower in the D213GH variant that was previously shown to operate with disturbed quinone chemistry. Addition of the quinone-site inhibitor piericidin A led to strongly decreased absorption peaks in the difference spectrum. A hypothesis for a mechanism of proton-coupled electron transfer with the quinol anion as catalytically important intermediate in complex I is discussed.


Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. eabc4209 ◽  
Author(s):  
Domen Kampjut ◽  
Leonid A. Sazanov

Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo–electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions.


2005 ◽  
Vol 10 (2-4) ◽  
pp. 208-222 ◽  
Author(s):  
Dirk Flemming ◽  
Stefan Stolpe ◽  
Daniel Schneider ◽  
Petra Hellwig ◽  
Thorsten Friedrich

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 455
Author(s):  
Flora Kahlhöfer ◽  
Max Gansen ◽  
Volker Zickermann

NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.


2006 ◽  
Vol 400 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Steven Sherwood ◽  
Judy Hirst

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the membrane-bound electron transport chain in mitochondria. It conserves energy, from the reduction of ubiquinone by NADH, as a protonmotive force across the inner membrane, but the mechanism of energy transduction is not known. The structure of the hydrophilic arm of thermophilic complex I supports the idea that proton translocation is driven at (or close to) the point of quinone reduction, rather than at the point of NADH oxidation, with a chain of iron–sulfur clusters transferring electrons between the two active sites. Here, we describe experiments to determine whether complex I, isolated from bovine heart mitochondria, operates via a Q-cycle mechanism analogous to that observed in the cytochrome bc1 complex. No evidence for the ‘reductant-induced oxidation’ of ubiquinol could be detected; therefore no support for a Q-cycle mechanism was obtained. Unexpectedly, in the presence of NADH, complex I inhibited by either rotenone or piericidin A was found to catalyse the exchange of redox states between different quinone and quinol species, providing a possible route for future investigations into the mechanism of energy transduction.


Sign in / Sign up

Export Citation Format

Share Document