accessory subunits
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Abhilash Padavannil ◽  
Maria G. Ayala-Hernandez ◽  
Eimy A. Castellanos-Silva ◽  
James A. Letts

Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI’s accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI’s 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies.


2021 ◽  
Author(s):  
Stephen T Hallett ◽  
Isabella Campbell Harry ◽  
Pascale Schellenberger ◽  
Lihong Zhou ◽  
Nora B Cronin ◽  
...  

The Smc5/6 complex plays an essential role in the resolution of recombination intermediates formed during mitosis or meiosis, or as a result of the cellular response to replication stress. It also functions as a restriction factor preventing viral integration. Here, we report the cryo-EM structure of the six-subunit budding yeast Smc5/6 holo-complex, reconstituted from recombinant proteins expressed in insect cells --providing a full overview of the complex in its apo / non-liganded form, and revealing how the Nse1/3/4 subcomplex binds to the hetero-dimeric SMC protein core. In addition, we demonstrate that a region within the head domain of Smc5, equivalent to the "W-loop" of Smc4 or "F-loop" of Smc1, mediates an essential interaction with Nse1. Taken together, these data confirm a degree of functional equivalence between the structurally unrelated KITE and HAWK accessory subunits associated with SMC complexes.


Author(s):  
Wiem Abidi ◽  
Lucía Torres-Sánchez ◽  
Axel Siroy ◽  
Petya Violinova Krasteva

Abstract Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se, but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qi Zhang ◽  
Samuel C. Agius ◽  
Sarena F. Flanigan ◽  
Michael Uckelmann ◽  
Vitalina Levina ◽  
...  

AbstractThe polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identities. JARID2 is the only accessory subunit of PRC2 that known to trigger an allosteric activation of methyltransferase. Yet, this mechanism cannot be generalised to all PRC2 variants as, in vertebrates, JARID2 is mutually exclusive with most of the accessory subunits of PRC2. Here we provide functional and structural evidence that the vertebrate-specific PRC2 accessory subunit PALI1 emerged through a convergent evolution to mimic JARID2 at the molecular level. Mechanistically, PRC2 methylates PALI1 K1241, which then binds to the PRC2-regulatory subunit EED to allosterically activate PRC2. PALI1 K1241 is methylated in mouse and human cell lines and is essential for PALI1-induced allosteric activation of PRC2. High-resolution crystal structures revealed that PALI1 mimics the regulatory interactions formed between JARID2 and EED. Independently, PALI1 also facilitates DNA and nucleosome binding by PRC2. In acute myelogenous leukemia cells, overexpression of PALI1 leads to cell differentiation, with the phenotype altered by a separation-of-function PALI1 mutation, defective in allosteric activation and active in DNA binding. Collectively, we show that PALI1 facilitates catalysis and substrate binding by PRC2 and provide evidence that subunit-induced allosteric activation is a general property of holo-PRC2 complexes.


2021 ◽  
Author(s):  
Noah J Harris ◽  
Meredith L. Jenkins ◽  
Udit Dalwadi ◽  
Kaelin D Fleming ◽  
Sung-Eun Nam ◽  
...  

Transport Protein Particle complexes (TRAPP) are evolutionarily conserved regulators of membrane trafficking, with this mediated by their guanine nucleotide exchange factor (GEF) activity towards Rab GTPases. In metazoans evidence suggests that two different TRAPP complexes exist, TRAPPII and TRAPPIII. These two complexes share a common core of subunits, with complex specific subunits (TRAPPC9 and TRAPPC10 in TRAPPII and TRAPPC8, TRAPPC11, TRAPPC12, TRAPPC13 in TRAPPIII). TRAPPII and TRAPPIII have distinct specificity for GEF activity towards Rabs, with TRAPPIII acting on Rab1, and TRAPPII acting on Rab1 and Rab11. The molecular basis for how these complex specific subunits alter GEF activity towards Rab GTPases is unknown. Here we have used a combination of biochemical assays, hydrogen deuterium exchange mass spectrometry (HDX-MS) and electron microscopy to examine the regulation of TRAPPII and TRAPPIIII complexes in solution and on membranes. GEF assays revealed that the TRAPPIII has GEF activity against Rab1 and Rab43, with no detectable activity against the other 18 Rabs tested. The TRAPPIII complex had significant differences in protein dynamics at the Rab binding site compared to TRAPPII, potentially indicating an important role of accessory subunits in altering the active site of TRAPP complexes. Both the TRAPPII and TRAPPIII complexes had enhanced GEF activity on lipid membranes, with HDX-MS revealing numerous conformational changes that accompany membrane association. HDX-MS also identified a membrane binding site in TRAPPC8. Collectively, our results provide insight into the functions of TRAPP complexes and how they can achieve Rab specificity.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 455
Author(s):  
Flora Kahlhöfer ◽  
Max Gansen ◽  
Volker Zickermann

NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.


2021 ◽  
Vol 22 (3) ◽  
pp. 1419
Author(s):  
Pilar Cercós ◽  
Diego A. Peraza ◽  
Angela de Benito-Bueno ◽  
Paula G. Socuéllamos ◽  
Abdoul Aziz-Nignan ◽  
...  

Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer’s disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.


2021 ◽  
Author(s):  
Bing Wang ◽  
Vladimir Svetlov ◽  
Evgeny Nudler ◽  
Irina Artsimovitch

ABSTRACTRNA-dependent RNA polymerase (RdRp) is a primary target for antivirals. We report that Nsp12, a catalytic subunit of SARS-CoV-2 RdRp, produces an inactive enzyme when codon-optimized for bacterial expression. We also show that accessory subunits, NTPs, and translation by slow ribosomes partially rescue Nsp12. Our findings have implications for functional studies and identification of novel inhibitors of RdRp and for rational design of other biotechnologically and medically important expression systems.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 296
Author(s):  
Quynh-Chi L. Dang ◽  
Duong H. Phan ◽  
Abigail N. Johnson ◽  
Mukund Pasapuleti ◽  
Hind A. Alkhaldi ◽  
...  

Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 “core” subunits that carry out oxidation–reduction reactions and proton translocation, as well as 31 additional supernumerary (or accessory) subunits whose functions are less well known. Diminished levels of complex I activity are seen in many mitochondrial disease states. This review seeks to tabulate mutations in the supernumerary subunits of humans that appear to cause disease. Mutations in 20 of the supernumerary subunits have been identified. The mutations were analyzed in light of the tertiary and quaternary structure of human complex I (PDB id = 5xtd). Mutations were found that might disrupt the folding of that subunit or that would weaken binding to another subunit. In some cases, it appeared that no protein was made or, at least, could not be detected. A very common outcome is the lack of assembly of complex I when supernumerary subunits are mutated or missing. We suggest that poor assembly is the result of disrupting the large network of subunit interactions that the supernumerary subunits typically engage in.


2020 ◽  
Vol 117 (48) ◽  
pp. 30465-30475
Author(s):  
Rachel Leicher ◽  
Eva J. Ge ◽  
Xingcheng Lin ◽  
Matthew J. Reynolds ◽  
Wenjun Xie ◽  
...  

Polycomb repressive complex 2 (PRC2) installs and spreads repressive histone methylation marks on eukaryotic chromosomes. Because of the key roles that PRC2 plays in development and disease, how this epigenetic machinery interacts with DNA and nucleosomes is of major interest. Nonetheless, the mechanism by which PRC2 engages with native-like chromatin remains incompletely understood. In this work, we employ single-molecule force spectroscopy and molecular dynamics simulations to dissect the behavior of PRC2 on polynucleosome arrays. Our results reveal an unexpectedly diverse repertoire of PRC2 binding configurations on chromatin. Besides reproducing known binding modes in which PRC2 interacts with bare DNA, mononucleosomes, and adjacent nucleosome pairs, our data also provide direct evidence that PRC2 can bridge pairs of distal nucleosomes. In particular, the “1–3” bridging mode, in which PRC2 engages two nucleosomes separated by one spacer nucleosome, is a preferred low-energy configuration. Moreover, we show that the distribution and stability of different PRC2–chromatin interaction modes are modulated by accessory subunits, oncogenic histone mutations, and the methylation state of chromatin. Overall, these findings have implications for the mechanism by which PRC2 spreads histone modifications and compacts chromatin. The experimental and computational platforms developed here provide a framework for understanding the molecular basis of epigenetic maintenance mediated by Polycomb-group proteins.


Sign in / Sign up

Export Citation Format

Share Document