scholarly journals Altered Structure and Anion Transport Properties of Band 3 (AE1,SLC4A1) in Human Red Cells Lacking Glycophorin A

2003 ◽  
Vol 279 (4) ◽  
pp. 2414-2420 ◽  
Author(s):  
Lesley J. Bruce ◽  
Rui-jun Pan ◽  
Diane L. Cope ◽  
Makoto Uchikawa ◽  
Robert B. Gunn ◽  
...  
Parasitology ◽  
1986 ◽  
Vol 93 (3) ◽  
pp. 427-431 ◽  
Author(s):  
A. R. Dluzewski ◽  
K. Rangachari ◽  
M. J. A. Tanner ◽  
D. J. Anstee ◽  
R. J. M. Wilson ◽  
...  

SUMMARYIt has previously been shown that antibodies against the transmembrane proteins, band 3 and glycophorin A, inhibit entry of the merozoite into the red cell and, in the case of band 3, it was established that attachment of the parasite to the cell is not prevented. We have found that antibodies against the cytoplasmic domains of band 3 and of glycophorin A, when present in the interior of resealed ghosts of human red cells, also inhibit invasion by P. falciparum. It is inferred that attachment of the merozoite to the red cell causes structural effects that are transduced to the membrane cytoskeleton and the antibodies against transmembrane proteins interfere with the invasion sequence at this level.


2005 ◽  
Vol 37 (11) ◽  
pp. 1258-1263 ◽  
Author(s):  
Lesley J Bruce ◽  
Hannah C Robinson ◽  
Hélène Guizouarn ◽  
Franck Borgese ◽  
Penny Harrison ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2120-2120
Author(s):  
Evan A Schwartz ◽  
Rahima Zennadi

Abstract Abstract 2120 In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human erythrocytes. ERK1/2 is involved in activation of ICAM-4-mediated sickle red blood cell (SSRBC) adhesion to the endothelium. However, other effects of the ERK1/2 activation in SSRBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are still unknown. To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2 activation, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Consistent with other RBC membrane phosphorylation studies, the phosphoproteins of SSRBC membrane ghosts with the highest number of uniquely phosphorylated peptides (>10), were ankyrin-1 of the ankyrin complex (n=33), spectrin β chain of the cytoskeleton network (n=15), and proteins of the junctional complex involved in binding integral membrane proteins to cytoskeletal proteins, including α- and β-adducins (n=22 and n=18, respectively), dematin (n=16) and protein 4.1 (n=17). In addition, several other phosphoproteins with >5 unique phosphorylated peptides, affecting RBC shape, flexibility, anion transport and protein trafficking, and adhesion, all of which contribute to the pathophysiology of SCD, were also observed. However, the MEK1/2 inhibitor U0126 was able to significantly down-regulate 37 unique RBC membrane phosphopeptides (from 21 unique phosphoproteins) in SSRBCs. We found that MEK1/2-dependent ERK1/2 activation in SSRBCs affected membrane-bound proteomes of both the junctional and ankyrin complexes, including dematin, α-adducin, β-adducin with phosphorylation of residues within the ERK1/2 consensus motif, and glycophorin A. MEK1/2/ERK1/2 signaling in SSRBCs induced changes within the actins/spectrins network as well by affecting phosphorylation of β-spectrins. Furthermore, the peptide metabotropic glutamate receptor 7 (mGlu7) also underwent serine phosphorylation at the ERK consensus motif. This could explain the rate of active glutamate transport in these cells. Significant changes only in membrane ghosts prepared from SSRBCs treated with U0126 or after addition of exogenous active ERK2 to these membrane ghosts, were also observed in the status of leucine-rich repeats and immunoglobulin-like domains protein 2, leucine-zipper-like transcriptional regulator 1, glucose transporter 1, and adenylyl cyclase-associated protein 1 (CAP1), which may potentially disturb degradation of misfolded glycoproteins and receptor ubiquitination, protein transcription, glucose transport and cAMP production, respectively. These data also suggest that a negative regulatory mechanism might exist in normal cells to prevent activation of ERK1/2-dependent phosphorylation of these membrane proteins. Among all these phosphorylated proteomes, glycophorin A was the most affected protein in SSRBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreased in both anion transport by band 3 and band 3 trafficking. The abundance of thirteen of the thirty-seven phosphopeptides was subsequently increased in normal RBCs co-incubated with recombinant ERK2, and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2. These findings expand upon the current model for the involvement of ERK1/2 signaling in RBCs. These findings also identify additional protein targets of this pathway other than the RBC adhesion molecule ICAM-4 and enhance the understanding of the mechanism of small molecule inhibitors of MEK/1/2/ERK1/2, which could be effective in ameliorating RBC hemorheology and adhesion, the hallmarks of SCD. Disclosures: No relevant conflicts of interest to declare.


1979 ◽  
Vol 74 (3) ◽  
pp. 319-334 ◽  
Author(s):  
V Castranova ◽  
M J Weise ◽  
J F Hoffman

Membrane potential and the rate constants for anion self-exchange in dog, cat, and human red blood cells have been shown to vary with cell volume. For dog and cat red cells, the outward rate constants for SO4 and Cl increase while the inward rate constant for SO4 decreases as cells swell or shrink. These changes coincide with the membrane potential becoming more negative as a result of changes in cell volume. Human red cells exhibit a similar change in the rate constants for SO4 and Cl efflux in response to cell swelling, but shrunken cells exhibit a decreased rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent increase in PNa. If this increase in PNa is prevented by ATP depletion or if the outward Na gradient is removed, the response to shrinking is identical to human red cells. These results suggest that the volume dependence of anion permeability may be secondary to changes in the anion equilibrium ratio which in red cells is reflected by the membrane potential. When the membrane potential and cell volume of human red cells were varied independently by a method involving pretreatment with nystatin, it was found that the rate of anion transport (for SO4 and Cl) does not vary with cell volume but rather with membrane potential (anion equilibrium ratio); that is, the rate constant for anion efflux is decreased and that for influx is increased as the membrane potential becomes more positive (internal anion concentration increases) while the opposite is true with membrane hyperpolarization (a fall in internal anion concentration).


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

Abstract The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


2000 ◽  
Vol 350 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Lesley J. BRUCE ◽  
Oliver WRONG ◽  
Ashley M. TOYE ◽  
Mark T. YOUNG ◽  
Graham OGLE ◽  
...  

We describe three mutations of the red-cell anion exchanger band 3 (AE1, SLC4A1) gene associated with distal renal tubular acidosis (dRTA) in families from Malaysia and Papua New Guinea: Gly701 → Asp (G701D), Ala858 → Asp (A858D) and deletion of Val850 (δV850). The mutations A858D and ∆V850 are novel; all three mutations seem to be restricted to South-East Asian populations. South-East Asian ovalocytosis (SAO), resulting from the band 3 deletion of residues 400–408, occurred in many of the families but did not itself result in dRTA. Compound heterozygotes of each of the dRTA mutations with SAO all had dRTA, evidence of haemolytic anaemia and abnormal red-cell properties. The A858D mutation showed dominant inheritance and the recessive ∆V850 and G701D mutations showed a pseudo-dominant phenotype when the transport-inactive SAO allele was also present. Red-cell and Xenopus oocyte expression studies showed that the ∆V850 and A858D mutant proteins have greatly decreased anion transport when present as compound heterozygotes (∆V850/A858D, ∆V850/SAO or A858D/SAO). Red cells with A858D/SAO had only 3% of the SO42- efflux of normal cells, the lowest anion transport activity so far reported for human red cells. The results suggest dRTA might arise by a different mechanism for each mutation. We confirm that the G701D mutant protein has an absolute requirement for glycophorin A for movement to the cell surface. We suggest that the dominant A858D mutant protein is possibly mis-targeted to an inappropriate plasma membrane domain in the renal tubular cell, and that the recessive ∆V850 mutation might give dRTA because of its decreased anion transport activity.


Biochemistry ◽  
1998 ◽  
Vol 37 (51) ◽  
pp. 17828-17835 ◽  
Author(s):  
Michael R. Cho ◽  
Stefan W. Eber ◽  
Shih-Chun Liu ◽  
Samuel E. Lux ◽  
David E. Golan

Sign in / Sign up

Export Citation Format

Share Document