scholarly journals Inhibition of α-Glucosidases I and II Increases the Cell Surface Expression of Functional Class A Macrophage Scavenger Receptor (SR-A) by Extending Its Half-life

2004 ◽  
Vol 279 (38) ◽  
pp. 39303-39309 ◽  
Author(s):  
Gang Tian ◽  
David Wilcockson ◽  
V. Hugh Perry ◽  
Pauline M. Rudd ◽  
Raymond A. Dwek ◽  
...  
Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1181-1194 ◽  
Author(s):  
András Kern ◽  
Alexander I. Agoulnik ◽  
Gillian D. Bryant-Greenwood

The relaxin receptor (LGR7, relaxin family peptide receptor 1) is a member of the leucine-rich repeat containing G protein-coupled receptors subgroup C. This and the LGR8 (relaxin family peptide receptor 2) receptor are unique in having a low-density lipoprotein class A (LDL-A) module at their N termini. This study was designed to show the role of the LDL-A in LGR7 expression and function. Point mutants for the conserved cysteines (Cys47 and Cys53) and for calcium binding asparagine (Asp58), a mutant with deleted LDL-A domain and chimeric LGR7 receptor with LGR8 LDL-A all showed no cAMP response to human relaxins H1 or H2. We have shown that their cell surface delivery was uncompromised. The mutation of the putative N-linked glycosylation site (Asn36) decreased cAMP production and reduced cell surface expression to 37% of the wild-type LGR7. All point mutant, chimeric, and wild-type receptor proteins were expressed as the two forms. The immature or precursor form of the receptor was 80 kDa, whereas the mature receptor, delivered to the cell surface was 95 kDa. The glycosylation mutant was also expressed as two forms with appropriately smaller molecular masses. Deletion of the LDL-A module resulted in expression of the mature receptor only. These data suggest that the LDL-A module of LGR7 influences receptor maturation, cell surface expression, and relaxin-activated signal transduction.


1993 ◽  
Vol 178 (2) ◽  
pp. 731-735
Author(s):  
R R Olson ◽  
J J Reuter ◽  
K Scalf

Recombinant major histocompatibility complex (MHC) class II molecules were expressed with extracellular polypeptide domains reorganized to form heavy (H) and light (L) chains (alpha 1-beta 1-beta 2 and alpha 2) analogous to class I. Accurate protein folding and dimerization is demonstrated by the ability of this 3+1-DR1 construct to bind class II-restricted peptides and stimulate CD4+ T cells. Cell surface expression of a functional class II molecule consisting of H and L chains supports the validity of current class II models and affirms the evolutionary relatedness of class I/II. MHC functions that differ between class I/II may be influenced by domain configuration, and the use of domain-shifted constructs will allow examination of this possibility.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Brogan Yarzabek ◽  
Anita J Zaitouna ◽  
Eli Olson ◽  
Gayathri N Silva ◽  
Jie Geng ◽  
...  

The highly polymorphic human leukocyte antigen (HLA) class I molecules present peptide antigens to CD8+ T cells, inducing immunity against infections and cancers. Quality control mediated by peptide loading complex (PLC) components is expected to ensure the cell surface expression of stable peptide-HLA class I complexes. This is exemplified by HLA-B*08:01 in primary human lymphocytes, with both expression level and half-life at the high end of the measured HLA-B expression and stability hierarchies. Conversely, low expression on lymphocytes is measured for three HLA-B allotypes that bind peptides with proline at position 2, which are disfavored by the transporter associated with antigen processing. Surprisingly, these lymphocyte-specific expression and stability differences become reversed or altered in monocytes, which display larger intracellular pools of HLA class I than lymphocytes. Together, the findings indicate that allele and cell-dependent variations in antigen acquisition pathways influence HLA-B surface expression levels, half-lives and receptivity to exogenous antigens.


2018 ◽  
Author(s):  
Brogan Yarzabek ◽  
Anita J Zaitouna ◽  
Eli Olson ◽  
Gayathri N Silva ◽  
Jie Geng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document