scholarly journals Implication of Phospholipase D2 in Oxidant-induced Phosphoinositide 3-Kinase Signaling via Pyk2 Activation in PC12 Cells

2005 ◽  
Vol 280 (16) ◽  
pp. 16319-16324 ◽  
Author(s):  
Yoshiko Banno ◽  
Kenji Ohguchi ◽  
Naoki Matsumoto ◽  
Masahiro Koda ◽  
Masashi Ueda ◽  
...  

The role of phospholipase D (PLD) activation in hydrogen peroxide (H2O2)-induced signal transduction and cellular responses is not completely understood. Here we present evidence that Ca2+-dependent tyrosine kinase, Pyk2, requires PLD activation to mediate survival pathways in rat pheochromocytoma PC12 cells under oxidative stress. The H2O2-induced phosphorylation of two Pyk2 sites (Tyr580, and Tyr881) was suppressed by 1-butanol, an inhibitor of transphosphatidylation by PLD, and also by transfection of catalytically negative mouse PLD2K758R (PLD2KR). Furthermore, we found that PLD2 was associated with Pyk2 and Src, and that activation of PLD2 was required for H2O2-enhanced association of Src with Pyk2 leading to full activation of Pyk2. H2O2-induced phosphorylation of Akt and p70S6K was dependent on phosphatidylinositol 3-kinase (PI3K) activity and was abolished by 1-butanol but not t-butanol. Furthermore, the PI3K/Akt activation in response to H2O2was reduced by transfection of either PLD2KR or the dominant negative Pyk2DN. This study is the first demonstration that PLD2 activation is implicated in Src-dependent phosphorylation of Pyk2 (Tyr580and Tyr881) by promoting the complex formation between Pyk2 and activated Src in PC12 cells exposed to H2O2, thereby resulting in activation of the survival signaling pathway PI3K/Akt/p70S6K.

2021 ◽  
Author(s):  
Max Gass ◽  
Sarah Borkowsky ◽  
Marie-Luise Lotz ◽  
Rita Schroeter ◽  
Pavel Nedvetsky ◽  
...  

Drosophila nephrocytes are an emerging model system for mammalian podocytes and podocyte-associated diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-Kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-Kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.


1996 ◽  
Vol 109 (2) ◽  
pp. 289-300 ◽  
Author(s):  
T.R. Jackson ◽  
I.J. Blader ◽  
L.P. Hammonds-Odie ◽  
C.R. Burga ◽  
F. Cooke ◽  
...  

Application of nerve growth factor (NGF) to PC12 cells stimulates a programme of physiological changes leading to the development of a sympathetic neuron like phenotype, one aspect of which is the development of a neuronal morphology characterised by the outgrowth of neuritic processes. We have investigated the role of phosphoinositide 3-kinase in NGF-stimulated morphological differentiation through two approaches: firstly, preincubation with wortmannin, a reputedly specific inhibitor of phosphoinositide kinases, completely inhibited initial morphological responses to NGF, the formation of actin filament rich microspikes and subsequent neurite outgrowth. This correlated with wortmannin inhibition of NGF-stimulated phosphatidylinositol(3,4,5)trisphosphate (PtdInsP3) and phosphatidylinositol(3,4)bisphosphate (PtdIns(3,4)P2) production and with inhibition of NGF-stimulated phosphoinositide 3-kinase activity in anti-phosphotyrosine immunoprecipitates. Secondly, the overexpression of a mutant p85 regulatory subunit of the phosphoinositide 3-kinase, which cannot interact with the catalytic p110 subunit, also substantially inhibited the initiation of NGF-stimulated neurite outgrowth. In addition, we found that wortmannin caused a rapid collapse of more mature neurites formed following several days exposure of PC12 cells to NGF. These results indicate that NGF-stimulated neurite outgrowth requires the activity of a tyrosine kinase regulated PI3-kinase and suggest that the primary product of this enzyme, PtdInsP3, is a necessary second messenger for the cytoskeletal and membrane reorganization events which occur during neuronal differentiation.


2011 ◽  
Vol 441 (1) ◽  
pp. 407-416 ◽  
Author(s):  
Sung Nyo Yoon ◽  
Kang Sik Kim ◽  
Ju Hwan Cho ◽  
Weina Ma ◽  
Hye-Jin Choi ◽  
...  

The purpose of the present study was to investigate the role of PLD (phospholipase D) in bFGF (basic fibroblast growth factor)-induced Bcl-2 expression and to examine whether overexpressed Bcl-2 influences neurite outgrowth in immortalized hippocampal progenitor cells (H19-7 cells). We found that Bcl-2 expression was maximally induced by bFGF within 24 h, and that this effect was reduced by inhibiting PLD1 expression with PLD1 small interfering RNA or by overexpressing DN (dominant-negative)-PLD1, whereas PLD1 overexpression markedly induced Bcl-2 expression. bFGF treatment activated Ras, Src, PI3K (phosphoinositide 3-kinase), PLCγ (phospholipase Cγ) and PKCα (protein kinase Cα). Among these molecules, Src and PKCα were not required for Bcl-2 expression. PLD activity was decreased by Ras, PI3K or PLCγ inhibitor, suggesting that PLD1 activation occurred through Ras, PI3K or PLCγ. We found that Ras was the most upstream molecule among these proteins, followed by the PI3K/PLCγ pathway, indicating that bFGF-induced PLD activation took place through the Ras/PI3K/PLCγ pathway. Furthermore, PLD1 was required for activation of JNK (c-Jun N-terminal kinase), which led to activation of STAT3 (signal transducer and activator of transcription 3) and finally Bcl-2 expression. When Bcl-2 was overexpressed, neurite outgrowth was stimulated along with induction of neurotrophic factors such as brain-derived neurotrophic factor and neurotrophin 4/5. In conclusion, PLD1 acts as a downstream effector of bFGF/Ras/PI3K/PLCγ signalling and regulates Bcl-2 expression through JNK/STAT3, which leads to neurite outgrowth in H19-7 cells.


2001 ◽  
Vol 356 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Mireille CORMONT ◽  
Nadine GAUTIER ◽  
Karine ILC ◽  
Yannick Le MARCHAND-BRUSTEL

The small GTPase Rab4 has been shown to participate in the subcellular distribution of GLUT4 under both basal and insulin-stimulated conditions in adipocytes. In the present work, we have characterized the effect of Rab4 ΔCT, a prenylation-deficient and thus cytosolic form of Rab4, in this process. We show that the expression of Rab4 ΔCT in freshly isolated adipocytes inhibits insulin-induced GLUT4 translocation, but only when this protein is in its GTP-bound active form. Further, it not only blocks the effect of insulin, but also that of a hyperosmotic shock, but does not interfere with the effect of zinc ions on GLUT4 translocation. Rab4 ΔCT was then shown to prevent GLUT4 translocation induced by the expression of an active form of phosphatidylinositol 3-kinase or of protein kinase B, without altering the activities of the enzymes. Our results are consistent with a role of Rab4 ΔCT acting as a dominant negative protein towards Rab4, possibly by binding to Rab4 effectors.


APOPTOSIS ◽  
2005 ◽  
Vol 10 (5) ◽  
pp. 1031-1041 ◽  
Author(s):  
A. Guillon-Munos ◽  
M. X. P. van Bemmelen ◽  
P. G. H. Clarke

2001 ◽  
Vol 277 (10) ◽  
pp. 8290-8297 ◽  
Author(s):  
Jung Min Han ◽  
Jae Ho Kim ◽  
Byoung Dae Lee ◽  
Sang Do Lee ◽  
Yong Kim ◽  
...  

2021 ◽  
Author(s):  
Maximilian Gass ◽  
Sarah Borkowsky ◽  
Marie-Luise Lotz ◽  
Rita Schröter ◽  
Pavel Nedvetsky ◽  
...  

Abstract Drosophila nephrocytes are an emerging model system for mammalian podocytes and podocyte-associated diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-Kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-Kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.


Sign in / Sign up

Export Citation Format

Share Document