scholarly journals Role of phosphoinositide 3-kinase in the autophagic death of serum-deprived PC12 cells

APOPTOSIS ◽  
2005 ◽  
Vol 10 (5) ◽  
pp. 1031-1041 ◽  
Author(s):  
A. Guillon-Munos ◽  
M. X. P. van Bemmelen ◽  
P. G. H. Clarke
1996 ◽  
Vol 109 (2) ◽  
pp. 289-300 ◽  
Author(s):  
T.R. Jackson ◽  
I.J. Blader ◽  
L.P. Hammonds-Odie ◽  
C.R. Burga ◽  
F. Cooke ◽  
...  

Application of nerve growth factor (NGF) to PC12 cells stimulates a programme of physiological changes leading to the development of a sympathetic neuron like phenotype, one aspect of which is the development of a neuronal morphology characterised by the outgrowth of neuritic processes. We have investigated the role of phosphoinositide 3-kinase in NGF-stimulated morphological differentiation through two approaches: firstly, preincubation with wortmannin, a reputedly specific inhibitor of phosphoinositide kinases, completely inhibited initial morphological responses to NGF, the formation of actin filament rich microspikes and subsequent neurite outgrowth. This correlated with wortmannin inhibition of NGF-stimulated phosphatidylinositol(3,4,5)trisphosphate (PtdInsP3) and phosphatidylinositol(3,4)bisphosphate (PtdIns(3,4)P2) production and with inhibition of NGF-stimulated phosphoinositide 3-kinase activity in anti-phosphotyrosine immunoprecipitates. Secondly, the overexpression of a mutant p85 regulatory subunit of the phosphoinositide 3-kinase, which cannot interact with the catalytic p110 subunit, also substantially inhibited the initiation of NGF-stimulated neurite outgrowth. In addition, we found that wortmannin caused a rapid collapse of more mature neurites formed following several days exposure of PC12 cells to NGF. These results indicate that NGF-stimulated neurite outgrowth requires the activity of a tyrosine kinase regulated PI3-kinase and suggest that the primary product of this enzyme, PtdInsP3, is a necessary second messenger for the cytoskeletal and membrane reorganization events which occur during neuronal differentiation.


2005 ◽  
Vol 280 (16) ◽  
pp. 16319-16324 ◽  
Author(s):  
Yoshiko Banno ◽  
Kenji Ohguchi ◽  
Naoki Matsumoto ◽  
Masahiro Koda ◽  
Masashi Ueda ◽  
...  

The role of phospholipase D (PLD) activation in hydrogen peroxide (H2O2)-induced signal transduction and cellular responses is not completely understood. Here we present evidence that Ca2+-dependent tyrosine kinase, Pyk2, requires PLD activation to mediate survival pathways in rat pheochromocytoma PC12 cells under oxidative stress. The H2O2-induced phosphorylation of two Pyk2 sites (Tyr580, and Tyr881) was suppressed by 1-butanol, an inhibitor of transphosphatidylation by PLD, and also by transfection of catalytically negative mouse PLD2K758R (PLD2KR). Furthermore, we found that PLD2 was associated with Pyk2 and Src, and that activation of PLD2 was required for H2O2-enhanced association of Src with Pyk2 leading to full activation of Pyk2. H2O2-induced phosphorylation of Akt and p70S6K was dependent on phosphatidylinositol 3-kinase (PI3K) activity and was abolished by 1-butanol but not t-butanol. Furthermore, the PI3K/Akt activation in response to H2O2was reduced by transfection of either PLD2KR or the dominant negative Pyk2DN. This study is the first demonstration that PLD2 activation is implicated in Src-dependent phosphorylation of Pyk2 (Tyr580and Tyr881) by promoting the complex formation between Pyk2 and activated Src in PC12 cells exposed to H2O2, thereby resulting in activation of the survival signaling pathway PI3K/Akt/p70S6K.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sirui Guo ◽  
Jiahong Wang ◽  
Huarong Xu ◽  
Weiwei Rong ◽  
Cheng Gao ◽  
...  

Alzheimer’s disease (AD) is a widespread neurodegenerative disease caused by complicated disease-causing factors. Unsatisfactorily, curative effects of approved anti-AD drugs were not good enough due to their actions on single-target, which led to desperate requirements for more effective drug therapies involved in multiple pathomechanisms of AD. The anti-AD effect with multiple action targets of Kai-Xin-San (KXS), a classic prescription initially recorded in Bei Ji Qian Jin Yao Fang and applied in the treatment of dementia for thousands of years, was deciphered with modern biological methods in our study. Aβ25-35 and D-gal-induced AD rats and Aβ25-35-induced PC12 cells were applied to establish AD models. KXS could significantly improve cognition impairment by decreasing neurotransmitter loss and enhancing the expression of PI3K/Akt. For the first time, KXS was confirmed to improve the expression of PI3K/Akt by neurotransmitter 5-HT. Thereinto, PI3K/Akt could further inhibit Tau hyperphosphorylation as well as the apoptosis induced by oxidative stress and neuroinflammation. Moreover, all above-mentioned effects were verified and blocked by PI3K inhibitor, LY294002, in Aβ25-35-induced PC12 cells, suggesting the precise regulative role of KXS in the PI3K/Akt pathway. The utilization and mechanism elaboration of KXS have been proposed and dissected in the combination of animal, molecular, and protein strategies. Our results demonstrated that KXS could ameliorate AD by regulating neurotransmitter and PI3K/Akt signal pathway as an effective multitarget treatment so that the potential value of this classic prescription could be explored from a novel perspective.


2004 ◽  
Vol 557 (3) ◽  
pp. 773-783 ◽  
Author(s):  
Guoxiang Yuan ◽  
Gautam Adhikary ◽  
Andrew A. McCormick ◽  
John. J. Holcroft ◽  
Ganesh K. Kumar ◽  
...  

2007 ◽  
Vol 282 (38) ◽  
pp. 27713-27720 ◽  
Author(s):  
Mete Erdogan ◽  
Ambra Pozzi ◽  
Neil Bhowmick ◽  
Harold L Moses ◽  
Roy Zent

TC21(R-Ras2), a Ras-related GTPase with transforming potential similar to H-, K- and N-Ras, is implicated in the pathogenesis of human cancers. Transforming growth factor β (TGF-β), a cytokine that plays a significant role in modulating tumorigenesis, normally prevents uncontrolled cell proliferation but paradoxically induces proliferation in H-Ras-transformed cancer cells. Although TC21 activates some pathways that mediate cellular transformation by the classical Ras proteins, the mechanisms through which TC21 induces tumor formation and how TGF-β regulates TC21 transformed cells is not known. To better understand the role of TC21 in cancer progression, we overexpressed an activated G23V mutant of TC21 in a nontumorigenic murine mammary epithelial (EpH4) cell line. Mutant TC21-expressing cells were significantly more oncogenic than cells expressing activated G12V H-Ras both in vivo and in vitro. TC21-induced transformation and proliferation required activation of p38 MAPK, mTOR (the mammalian target of rapamycin), and phosphoinositide 3-kinase but not Akt/PKB. Transformation by TC21 rendered EpH4 cells insensitive to the growth inhibitory effects of TGF-β, and the soft agar growth of these cells was increased upon TGF-β stimulation. Despite losing responsiveness to TGF-β-mediated growth inhibition, both Smad-dependent and independent pathways remained intact in TC21-transformed cells. Thus, overexpression of active TC21 in EpH4 cells induces tumorigenicity through the phosphoinositide 3-kinase, p38 MAPK, and mTOR pathways, and these cells lose their sensitivity to the normal growth inhibitory role of TGF-β.


Pharmacology ◽  
2011 ◽  
Vol 87 (3-4) ◽  
pp. 224-231 ◽  
Author(s):  
Youngjun Seo ◽  
Mihee Kim ◽  
Minjoung Choi ◽  
Sunhee Kim ◽  
Kidae Park ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (21) ◽  
pp. 4237-4246 ◽  
Author(s):  
Jia Chen ◽  
Haiyang Tang ◽  
Nissim Hay ◽  
Jingsong Xu ◽  
Richard D. Ye

In neutrophils, the phosphoinositide 3-kinase/Akt signaling cascade is involved in migration, degranulation, and O2− production. However, it is unclear whether the Akt kinase isoforms have distinct functions in neutrophil activation. Here we report functional differences between the 2 major Akt isoforms in neutrophil activation on the basis of studies in which we used individual Akt1 and Akt2 knockout mice. Akt2−/− neutrophils exhibited decreased cell migration, granule enzyme release, and O2− production compared with wild-type and Akt1−/− neutrophils. Surprisingly, Akt2 deficiency and pharmacologic inhibition of Akt also abrogated phorbol ester-induced O2− production, which was unaffected by treatment with the phosphoinositide 3-kinase inhibitor LY294002. The decreased O2− production in Akt2−/− neutrophils was accompanied by reduced p47phox phosphorylation and its membrane translocation, suggesting that Akt2 is important for the assembly of phagocyte nicotinamide adenine dinucleotide phosphate oxidase. In wild-type neutrophils, Akt2 but not Akt1 translocated to plasma membrane upon chemoattractant stimulation and to the leading edge in polarized neutrophils. In the absence of Akt2, chemoattractant-induced Akt protein phosphorylation was significantly reduced. These results demonstrate a predominant role of Akt2 in regulating neutrophil functions and provide evidence for differential activation of the 2 Akt isoforms in neutrophils.


Blood ◽  
2004 ◽  
Vol 104 (6) ◽  
pp. 1703-1710 ◽  
Author(s):  
Juhua Chen ◽  
Sarmishtha De ◽  
Derek S. Damron ◽  
William S. Chen ◽  
Nissim Hay ◽  
...  

Abstract We investigated the role of Akt-1, one of the major downstream effectors of phosphoinositide 3-kinase (PI3K), in platelet function using mice in which the gene for Akt-1 had been inactivated. Using ex vivo techniques, we showed that Akt-1-deficient mice exhibited impaired platelet aggregation and spreading in response to various agonists. These differences were most apparent in platelets activated with low concentrations of thrombin. Although Akt-1 is not the predominant Akt isoform in mouse platelets, its absence diminished the amount of total phospho-Akt and inhibited increases in intracellular Ca2+ concentration in response to thrombin. Moreover, thrombin-induced platelet α-granule release as well as release of adenosine triphosphate from dense granules was also defective in Akt-1-null platelets. Although the absence of Akt-1 did not influence expression of the major platelet receptors for thrombin and collagen, fibrinogen binding in response to these agonists was significantly reduced. As a consequence of impaired αIIbβ3 activation and platelet aggregation, Akt-1 null mice showed significantly longer bleeding times than wild-type mice. (Blood. 2004;104:1703-1710)


Sign in / Sign up

Export Citation Format

Share Document