scholarly journals The Quinone Binding Site in Escherichia coli Succinate Dehydrogenase Is Required for Electron Transfer to the Heme b

2006 ◽  
Vol 281 (43) ◽  
pp. 32310-32317 ◽  
Author(s):  
Quang M. Tran ◽  
Richard A. Rothery ◽  
Elena Maklashina ◽  
Gary Cecchini ◽  
Joel H. Weiner

We have examined the role of the quinone-binding (QP) site of Escherichia coli succinate:ubiquinone oxidoreductase (succinate dehydrogenase) in heme reduction and reoxidation during enzyme turnover. The SdhCDAB electron transfer pathway leads from a cytosolically localized flavin adenine dinucleotide cofactor to a QP site located within the membrane-intrinsic domain of the enzyme. The QP site is sandwiched between the [3Fe-4S] cluster of the SdhB subunit and the heme b556 that is coordinated by His residues from the SdhC and SdhD subunits. The intercenter distances between the cluster, heme, and QP site are all within the theoretical 14 Å limit proposed for kinetically competent intercenter electron transfer. Using EPR spectroscopy, we have demonstrated that the QP site of SdhCDAB stabilized a ubisemiquinone radical intermediate during enzyme turnover. Potentiometric titrations indicate that this species has an Em,8 of ∼60 mV and a stability constant (KSTAB) of ∼1.0. Mutants of the following conserved QP site residues, SdhC-S27, SdhC-R31, and SdhD-D82, have severe consequences on enzyme function. Mutation of the conserved SdhD-Y83 suggested to hydrogen bond to the ubiquinone cofactor had a less severe but still significant effect on function. In addition to loss of overall catalysis, these mutants also affect the rate of succinate-dependent heme reduction, indicating that the QP site is an essential stepping stone on the electron transfer pathway from the [3Fe-4S] cluster to the heme. Furthermore, the mutations result in the elimination of EPR-visible ubisemiquinone during potentiometric titrations. Overall, these results demonstrate the importance of a functional, semiquinone-stabilizing QP site for the observation of rapid succinate-dependent heme reduction.

2021 ◽  
Vol 118 (15) ◽  
pp. e2022308118
Author(s):  
Xiaoting Zhou ◽  
Yan Gao ◽  
Weiwei Wang ◽  
Xiaolin Yang ◽  
Xiuna Yang ◽  
...  

Complex II, also known as succinate dehydrogenase (SQR) or fumarate reductase (QFR), is an enzyme involved in both the Krebs cycle and oxidative phosphorylation. Mycobacterial Sdh1 has recently been identified as a new class of respiratory complex II (type F) but with an unknown electron transfer mechanism. Here, using cryoelectron microscopy, we have determined the structure of Mycobacterium smegmatis Sdh1 in the presence and absence of the substrate, ubiquinone-1, at 2.53-Å and 2.88-Å resolution, respectively. Sdh1 comprises three subunits, two that are water soluble, SdhA and SdhB, and one that is membrane spanning, SdhC. Within these subunits we identified a quinone-binding site and a rarely observed Rieske-type [2Fe-2S] cluster, the latter being embedded in the transmembrane region. A mutant, where two His ligands of the Rieske-type [2Fe-2S] were changed to alanine, abolished the quinone reduction activity of the Sdh1. Our structures allow the proposal of an electron transfer pathway that connects the substrate-binding and quinone-binding sites. Given the unique features of Sdh1 and its essential role in Mycobacteria, these structures will facilitate antituberculosis drug discovery efforts that specifically target this complex.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhan Song ◽  
Cancan Wei ◽  
Chao Li ◽  
Xin Gao ◽  
Shuhong Mao ◽  
...  

AbstractFerredoxin (Fdx) is regarded as the main electron carrier in biological electron transfer and acts as an electron donor in metabolic pathways of many organisms. Here, we screened a self-sufficient P450-derived reductase PRF with promising production yield of 9OHAD (9α-hydroxy4-androstene-3,17-dione) from AD, and further proved the importance of [2Fe–2S] clusters of ferredoxin-oxidoreductase in transferring electrons in steroidal conversion. The results of truncated Fdx domain in all oxidoreductases and mutagenesis data elucidated the indispensable role of [2Fe–2S] clusters in the electron transfer process. By adding the independent plant-type Fdx to the reaction system, the AD (4-androstene-3,17-dione) conversion rate have been significantly improved. A novel efficient electron transfer pathway of PRF + Fdx + KshA (KshA, Rieske-type oxygenase of 3-ketosteroid-9-hydroxylase) in the reaction system rather than KshAB complex system was proposed based on analysis of protein–protein interactions and redox potential measurement. Adding free Fdx created a new conduit for electrons to travel from reductase to oxygenase. This electron transfer pathway provides new insight for the development of efficient exogenous Fdx as an electron carrier. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document