scholarly journals Helicobacter pyloriVacA Disrupts Apical Membrane-Cytoskeletal Interactions in Gastric Parietal Cells

2008 ◽  
Vol 283 (39) ◽  
pp. 26714-26725 ◽  
Author(s):  
Fengsong Wang ◽  
Peng Xia ◽  
Fang Wu ◽  
Dongmei Wang ◽  
Wei Wang ◽  
...  
2003 ◽  
Vol 14 (3) ◽  
pp. 1097-1108 ◽  
Author(s):  
Rihong Zhou ◽  
Zhen Guo ◽  
Charles Watson ◽  
Emily Chen ◽  
Rong Kong ◽  
...  

Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.


2021 ◽  
Author(s):  
Wanjuan Wang ◽  
Ying Zhao ◽  
Zeqi Su ◽  
Fuhao Chu ◽  
Tao Li ◽  
...  

Abstract Background: Ethanol has been linked to atrophic gastritis and gastric carcinoma. Although it is well known that ethanol can result in hypochlorhydria, the molecular mechanisms underlying this phenomenon remain poorly understood.Results: Here we used gastric organoids to show that ethanol permeabilized the apical membrane of gastric parietal cells and induced ezrin hypochlorhydria. The functional consequences of ethanol on parietal cell physiology were studied using organoids. Gastric organoids were pre-incubated in the basic medium or with EGTA or E64 , and incubated at 37℃ in either medium alone, or medium containing 6% ethanol. We assessed ezrin proteolysis. Ethanol permeabilization induced activation of calpainⅠand subsequent proteolysis of ezrin, which resulted in the liberation of ezrin from the apical membrane of the parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal cells in the presence of ethanol.Conclusion: Taken together, our data indicated that ethanol disrupted the apical membrane-cytoskeleton interactions in gastric parietal cells and thereby caused hypochlorhydria.


1989 ◽  
Vol 256 (6) ◽  
pp. G1082-G1089 ◽  
Author(s):  
D. K. Hanzel ◽  
T. Urushidani ◽  
W. R. Usinger ◽  
A. Smolka ◽  
J. G. Forte

Monoclonal antibodies were raised against an 80-kDa phosphoprotein (80K) that is phosphorylated upon stimulation of gastric acid secretion and that copurifies with the acid-forming H+-K+-ATPase isolated from stimulated tissue. These antibodies were used to demonstrate that in the gastric mucosa 80K is limited to parietal cells and not found in surface, mucous neck, or chief cells. 80K was also found in other transporting epithelia, including intestine and kidney, but was not found in brain, liver, red blood cells, or colon. Immunohistological localization of 80K in resting glands revealed a fine network, projecting from the gland lumen and anastomosing throughout the parietal cell. This network is quite similar to the staining pattern for F-actin contained in microvilli that line the apical membrane of parietal cells. Stimulation of acid secretion rearranges 80K to a more rugose pattern filling the entire cell. In stimulated cells the distribution pattern of 80K is indistinguishable from that stained with antibodies against the H+-K+-ATPase. These data strongly suggest that 80K is an apical membrane protein of the parietal cell.


2011 ◽  
Vol 301 (4) ◽  
pp. G591-G600 ◽  
Author(s):  
Wenjun He ◽  
Wensheng Liu ◽  
Catherine S. Chew ◽  
Susan S. Baker ◽  
Robert D. Baker ◽  
...  

Potassium ions are required for gastric acid secretion. Several potassium channels have been implicated in providing K+ at the apical membrane of parietal cells. In examining the mRNA expression levels between gastric mucosa and liver tissue, KCNJ15 stood out as the most highly specific K+ channel in the gastric mucosa. Western blot analysis confirmed that KCNJ15 is abundant in the stomach. Immunofluorescence staining of isolated gastric glands indicated that KCNJ15 was expressed in parietal cells and chief cells, but not in mucous neck cells. In resting parietal cells, KCNJ15 was mainly found in puncta throughout the cytoplasm but was distinct from H+-K+-ATPase. Upon stimulation, KCNJ15 and H+-K+-ATPase become colocalized on the apical membranes, as suggested by immunofluorescence staining. Western blot analysis of the resting and the stimulated membrane fractions confirmed this observation. From nonsecreting preparations, KCNJ15-containing vesicles sedimented after a 4-h centrifugation at 100,000 g, but not after a 30-min spin, which did sediment most of the H+-K+-ATPase-containing tubulovesicles. Most of the KCNJ15 containing small vesicle population was depleted upon stimulation of parietal cells, as indicated by the fact that the KCNJ15 signal was shifted to a large membrane fraction that sedimented at 4,000 g. Our results demonstrate that, in nonsecreting parietal cells, KCNJ15 is stored in vesicles distinct from the H+-K+-ATPase-enriched tubulovesicles. Furthermore, upon stimulation, KCNJ15 and H+-K+-ATPase both translocate to the apical membrane for active acid secretion. Thus KCNJ15 can be added to the family of apical K+ channels in gastric parietal cells.


1993 ◽  
Vol 264 (1) ◽  
pp. C63-C70 ◽  
Author(s):  
P. R. Smith ◽  
A. L. Bradford ◽  
E. H. Joe ◽  
K. J. Angelides ◽  
D. J. Benos ◽  
...  

Stimulation of HCl secretion by gastric parietal cells requires the fusion of cytoplasmic H(+)-K(+)-ATPase-bearing tubulovesicles with the apical membrane. This insertion of membrane results in a dramatic increase in apical surface area through the formation of microvilli. To elucidate the elements that may stabilize the newly inserted H(+)-K(+)-ATPase within the apical membrane, we searched for specific cytoskeletal proteins associating with the gastric enzyme. We document by immunoblot analysis that ankyrin, spectrin, and actin copurify with H(+)-K(+)-ATPase microsomes prepared from gastric parietal cells. Coprecipitation of 125I-labeled native erythrocyte ankyrin with the H(+)-K(+)-ATPase from gastric microsomes using anti-H(+)-K(+)-ATPase antibodies suggests that ankyrin associates with the H(+)-K(+)-ATPase. Indirect immunofluorescence and confocal microscopy show that ankyrin and H(+)-K(+)-ATPase cosegregate within resting and secreting parietal cells. Taken together, these data suggest that the association of the gastric H(+)-K(+)-ATPase with spectrin and actin is mediated by ankyrin and that this interaction contributes to the maintenance of the polarized distribution of the enzyme to the apical domain of gastric parietal cells during acid secretion.


2005 ◽  
Vol 280 (14) ◽  
pp. 13584-13592 ◽  
Author(s):  
Xinwang Cao ◽  
Xia Ding ◽  
Zhen Guo ◽  
Rihong Zhou ◽  
Fengsong Wang ◽  
...  

2020 ◽  
Author(s):  
Wanjuan Wang ◽  
Ying Zhao ◽  
Zeqi Su ◽  
Fuhao Chu ◽  
Tao Li ◽  
...  

Abstract Background: Ethanol have been linked to atrophic gastritis and gastric carcinoma. Although it is well known that ethanol can result in hypochlorhydria, the molecular mechanisms underlying this phenomenon remain poorly understood.Results: Here we used gastric organoids to show that ethanol permeabilized the apical membrane of gastric parietal cells and induced ezrin hypochlorhydria. The functional consequences of ethanol on parietal cell physiology were studied using organoids. Gastric organoids were pre-incubated in the basic medium or with EGTA or E64 , and incubated at 37℃ in either medium alone, or medium containing 6% ethanol. We assessed ezrin proteolysis. Ethanol permeabilization induced activation of calpainⅠand subsequent proteolysis of ezrin, which resulted in the liberation of ezrin from the apical membrane of the parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal cells in the presence of ethanol.Conclusion: Taken together, our data indicated that ethanol disrupted the apical membrane-cytoskeletal interactions in gastric parietal cells and thereby caused hypochlorhydria.


2003 ◽  
Vol 285 (3) ◽  
pp. C662-C673 ◽  
Author(s):  
Rihong Zhou ◽  
Charles Watson ◽  
Chuanhai Fu ◽  
Xuebiao Yao ◽  
John G. Forte

Nonmuscle myosin II has been shown to participate in organizing the actin cytoskeleton in polarized epithelial cells. Vectorial acid secretion in cultured parietal cells involves translocation of proton pumps from cytoplasmic vesicular membranes to the apical plasma membrane vacuole with coordinated lamellipodial dynamics at the basolateral membrane. Here we identify nonmuscle myosin II in rabbit gastric parietal cells. Western blots with isoform-specific antibodies indicate that myosin IIA is present in both cytosolic and particulate membrane fractions whereas the IIB isoform is associated only with particulate fractions. Immunofluorescent staining demonstrates that myosin IIA is diffusely located throughout the cytoplasm of resting parietal cells. However, after stimulation, myosin IIA is rapidly redistributed to lamellipodial extensions at the cell periphery; virtually all the cytoplasmic myosin IIA joins the newly formed basolateral membrane extensions. 2,3-Butanedione monoximine (BDM), a myosin-ATPase inhibitor, greatly diminishes the lamellipodial dynamics elicited by stimulation and retains the pattern of myosin IIA cytoplasmic staining. However, BDM had no apparent effect on the stimulation associated redistribution of H,K-ATPase from a cytoplasmic membrane compartment to apical membrane vacuoles. The myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1 H-hexahydro-1,4-diazepine (ML-7) also did not alter the stimulation-associated recruitment of H,K-ATPase to apical membrane vacuoles, but unlike BDM it had relatively minor inhibitory effects on lamellipodial dynamics. We conclude that specific disruption of the basolateral actomyosin cytoskeleton has no demonstrable effect on recruitment of H,K-ATPase-rich vesicles into the apical secretory membrane. However, myosin II plays an important role in regulating lamellipodial dynamics and cortical actomyosin associated with parietal cell activation.


Sign in / Sign up

Export Citation Format

Share Document