myosin iia
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 41)

H-INDEX

50
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Madoca Inukai ◽  
Ako Yokoi ◽  
Yuuki Ishizuka ◽  
Miki Hashimura ◽  
Toshihide Matsumoto ◽  
...  

Abstract Background Glioblastoma (GBM) is the most aggressive form of brain tumor and has vascular-rich features. The S100A4/non-muscle myosin IIA (NMIIA) axis contributes to aggressive phenotypes in a variety of human malignancies, but little is known about its involvement in GBM tumorigenesis. Herein, we examined the role of the S100A4/NMIIA axis during tumor progression and vasculogenesis in GBM Methods We performed immunohistochemistry for S100A4, NMIIA, and two hypoxic markers including hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase 9 (CA9) in samples from 94 GBM cases. The functional impact of S100A4 knockdown and hypoxia were also assessed using a GBM cell line. Results In clinical GBM samples, overexpression of S100A4 and NMIIA was observed in both non-pseudopalisading (Ps) and Ps (-associated) perinecrotic lesions, consistent with stabilization of HIF-1α and CA9. CD34(+) microvascular densities (MVDs) and the interaction of S100A4 and NMIIA were significantly higher in non-Ps perinecrotic lesions compared to those in Ps perinecrotic areas. In non-Ps perinecrotic lesions, S100A4(+)/HIF-1α(-) GBM cells were recruited to the surface of host preexisting vessels in the vascular-rich areas. Elevated vascular endothelial growth factor A (VEGFA) mRNA expression was found in S100A4(+)/HIF-1α(+) GBM cells adjacent to the vascular-rich areas. In addition, GBM patients with high S100A4 protein expression had significantly worse OS and PFS than did patients with low S100A4 expression. Knockdown of S100A4 in the GBM cell line KS-1 decreased migration capability, concomitant with decreased Slug expression; the opposite effects were elicited by blebbistatin-dependent inhibition of NMIIA. Conclusion S100A4(+)/HIF-1α(-) GBM cells are recruited to (and migrate along) preexisting vessels through inhibition of NMIIA activity. This is likely stimulated by extracellular VEGF that is released by S100A4(+)/HIF-1α(+) tumor cells in non-Ps perinecrotic lesions. In turn, these events engender tumor progression via acceleration of pro-tumorigenic vascular functions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasuhiro Yamamoto ◽  
Haruka Chino ◽  
Satoshi Tsukamoto ◽  
Koji L. Ode ◽  
Hiroki R. Ueda ◽  
...  

AbstractAutophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9–MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life.


Author(s):  
Clare Rogerson ◽  
Duncan J. Wotherspoon ◽  
Cristina Tommasi ◽  
Robert W. Button ◽  
Ryan F. L. O’Shaughnessy

AbstractKeratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Wencan Ke ◽  
Bingjin Wang ◽  
Wenbin Hua ◽  
Yu Song ◽  
Saideng Lu ◽  
...  

2021 ◽  
Author(s):  
Timothy Morris ◽  
Eva Sue ◽  
Caleb Geniesse ◽  
William M Brieher ◽  
Vivian W Tang

AbstractThe apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and cell-cell adhesion. Yet, the structural basis of force generation at the apical junction is not completely understood. Here, we describe 2 actomyosin structures at the apical junction containing synaptopodin, myosin IIB, and alpha-actinin-4. We showed that synaptopodin is required for the assembly of E-cadherin-associated apical stress fibers and a novel macromolecular structure, which we named contractomere. Knockdown of synaptopodin abolished both apical stress fiber and contractomere formation. Moreover, depletion of synaptopodin abolished basal stress fibers, converting myosin IIA sarcomere-like arrangement into a meshwork-type actomyosin organization. We propose a new model of junction dynamics that is dependent on contractomere movement to control epithelial cell boundary and geometry. Our findings reveal 2 actomyosin structures at the epithelial junction and underscore synaptopodin in the assembly of stress fibers and contractomeres.Summary StatementSynaptopodin assembles 2 actomyosin structures at the epithelial junction: apical stress fiber and contractomere. Synaptopodin selectively regulates myosin IIB without altering the level of myosin IIA and is responsible for converting evolutionary-conserved actomyosin meshwork into vertebrate-specific stress fibers.Graphic Abstract


2021 ◽  
Vol 10 (02) ◽  
pp. 11-19
Author(s):  
Marie Kelly-Worden ◽  
Amy Troesch ◽  
Sarah Pruitt ◽  
Ryan Rhodes ◽  
Deavin Eviston

2020 ◽  
pp. mbc.E20-07-0480
Author(s):  
Jessica Wayt ◽  
Alexander Cartagena-Rivera ◽  
Dipannita Dutta ◽  
Julie G. Donaldson ◽  
Clare M. Waterman

Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell-cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.


Sign in / Sign up

Export Citation Format

Share Document