scholarly journals Intermolecular autocatalytic activation of serine protease zymogen factor C through an active transition state responding to lipopolysaccharide

2018 ◽  
Vol 293 (29) ◽  
pp. 11589-11599 ◽  
Author(s):  
Toshio Shibata ◽  
Yuki Kobayashi ◽  
Yuto Ikeda ◽  
Shun-ichiro Kawabata
1987 ◽  
Author(s):  
F Tokunaga ◽  
T Miyata ◽  
T Nakamura ◽  
T Morita ◽  
S Iwanaga

Limulus clotting factor, factor C, is a lipopolysaccharide (LPS)-sensitive serine-protease zymogen present in the hemocytes. It is a two-chain glycoprotein (M.W. = 123,000) composed of a heavy chain (M.W. = 80,000) and a light chain (M.W. = 43,000) T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521 .On further studies of this zymogen, a single-chain factor C (M.W. = 123,000) was identified by Western blotting technique. The heavy chain had an NH2-terminal sequence of Ser-Gly-Val-Asp-, which was consistent with the NH2-terminal sequence of the single-chain factor C, indicating that the heavy chain is located in the NH2-terminal part of the zymogen. The light chain had an NH22-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with LPS resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72.amino acids) and B chains derived from the light chain was formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar structuraly to those a family of repeats in human β2 -glycoprotein I, complement factors B, Clr, Cls, H, C4b-binding protein, 02, coagulation factor XIII b subunit, haptoglobin a chain, and interleukin 2 receptor. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence of -ASP-Ala-Cys-Ser-Gly-Asp-SER-Gly-Gly-Pro-.These results indicate that limulus factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine-protease by hydrolysis of a specific Phe-Ile peptide bond. The correlation of limulus factor C and mammalian complement proteins was also suggested.


1997 ◽  
Vol 322 (3) ◽  
pp. 839-843 ◽  
Author(s):  
Ara KAHYAOGLU ◽  
Khadijeh HAGHJOO ◽  
Ferenc KRAICSOVITS ◽  
Frank JORDAN ◽  
Laszlo POLGAR

N-Benzyloxycarbonyl-l-prolyl-l-[1-13C]prolinal was synthesized starting with reduction of l-[1-13C]Pro to l-[1-13C]prolinol, followed by coupling with N-benzyloxycarbonyl-l-Pro to N-benzyloxycarbonyl-l-Pro-l-[1-13C]prolinol (Z-Pro-[1-13C]prolinol), and finally oxidation of the alcohol to the aldehyde with dimethyl sulphoxide. While the 13C NMR chemical shift of the aldehyde carbon is 202 p.p.m., that of the aldehyde hydrate is between 91.6 and 91.8 p.p.m., that of the dithiothreitol adduct is between 74.8 and 75.0 p.p.m., and that in the presence of the serine protease prolyl oligopeptidase is at 92.3 p.p.m.. The linewidth of the latter is 114 Hz, roughly consistent with the molecular mass of 80 kDa reported for the enzyme. Inverse detection experiments gave a 1H resonance at 5.29 p.p.m. with a linewidth of 80 Hz, also consistent with the expected chemical shift and linewidth for a hemiacetal bound to such a large enzyme, while the free hydrate gave resonances at 5.18 and 5.25 p.p.m., with very much narrower linewidths. It is concluded that Z-Pro-prolinal, a putative transition-state analogue for prolyl oligopeptidase, forms a tetrahedral complex with the enzyme at its catalytic serine, rather than at a neighbouring cysteine that was found to be highly reactive according to chemical modification studies.


1988 ◽  
Vol 176 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Takanori NAKAMURA ◽  
Fuminori TOKUNAGA ◽  
Takashi MORITA ◽  
Sadaaki IWANAGA ◽  
Shoichi KUSUMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document