scholarly journals HIV-cell membrane fusion intermediates are restricted by Serincs as revealed by cryo-electron and TIRF microscopy

2020 ◽  
Vol 295 (45) ◽  
pp. 15183-15195 ◽  
Author(s):  
Amanda E. Ward ◽  
Volker Kiessling ◽  
Owen Pornillos ◽  
Judith M. White ◽  
Barbie K. Ganser-Pornillos ◽  
...  

To enter a cell and establish infection, HIV must first fuse its lipid envelope with the host cell plasma membrane. Whereas the process of HIV membrane fusion can be tracked by fluorescence microscopy, the 3D configuration of proteins and lipids at intermediate steps can only be resolved with cryo-electron tomography (cryoET). However, cryoET of whole cells is technically difficult. To overcome this problem, we have adapted giant plasma membrane vesicles (or blebs) from native cell membranes expressing appropriate receptors as targets for fusion with HIV envelope glycoprotein-expressing pseudovirus particles with and without Serinc host restriction factors. The fusion behavior of these particles was probed by TIRF microscopy on bleb-derived supported membranes. Timed snapshots of fusion of the same particles with blebs were examined by cryo-ET. The combination of these methods allowed us to characterize the structures of various intermediates on the fusion pathway and showed that when Serinc3 or Serinc5 (but not Serinc2) were present, later fusion products were more prevalent, suggesting that Serinc3/5 act at multiple steps to prevent progression to full fusion. In addition, the antifungal amphotericin B reversed Serinc restriction, presumably by intercalation into the fusing membranes. Our results provide a highly detailed view of Serinc restriction of HIV-cell membrane fusion and thus extend current structural and functional information on Serinc as a lipid-binding protein.

1996 ◽  
Vol 314 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R. Alexander BLACKWOOD ◽  
James E. SMOLEN ◽  
Ronald J. HESSLER ◽  
Donna M. HARSH ◽  
Amy TRANSUE

Several models have been developed to study neutrophil degranulation. At the most basic level, phospholipid vesicles have been used to investigate the lipid interactions occurring during membrane fusion. The two major forms of assays used to measure phospholipid vesicle fusion are based either on the dilution of tagged phospholipids within the membrane of the two fusing partners or the mixing of the aqueous contents of the vesicles. Although problems exist with both methods, the latter is considered to be more accurate and representative of true fusion. Using 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS) as a fluorescent marker, we have taken advantage of the quenching properties of p-xylenebispyridinium bromide (‘DPX’) to develop a simple aqueous-space mixing assay that can be used with any sealed vesicle. We compared our new assay with more conventional assays using liposomes composed of phosphatidic acid (PA) and phosphatidylethanolamine (PE), obtaining comparable results with respect to Ca2+-dependent fusion. We extended our studies to measure the fusion of neutrophil plasma-membrane vesicles as well as azurophil and specific granules with PA/PE (1:3) liposomes. Both specific granules and plasma-membrane vesicles fused with PA/PE liposomes at [Ca2+] as low as 500 μM, while azurophil granules showed no fusion at [Ca2+] as high as 12 mM. These differences in the ability of Ca2+ to induce fusion may be related to differences observed in whole cells with respect to secretion.


2020 ◽  
Vol 295 (45) ◽  
pp. 15196-15197
Author(s):  
Solène Denolly ◽  
François-Loïc Cosset

The penetration of enveloped viruses into target cells requires the fusion of the lipid envelope of their virions with the host lipid membrane though a stepwise and highly sophisticated process. However, the intermediate steps in this process have seldom been visualized due to their rarity and rapidity. Here, using cryo-electron tomography, TIRF microscopy, and cell membrane–derived vesicles called blebs, Ward et al. visualize intermediates of the HIV-cell membrane fusion process and demonstrate how Serinc proteins prevent full fusion by interfering with this process.


2012 ◽  
Vol 33 (7) ◽  
pp. 535-542 ◽  
Author(s):  
Wenjun J. Sun ◽  
Mehri Kaviani Mogadam ◽  
Marianne Sommarin ◽  
Henrietta Nittby ◽  
Leif G. Salford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document