scholarly journals Rapid Production of Virus Protein Microarray Using Protein Microarray Fabrication through Gene Synthesis (PAGES)

2016 ◽  
Vol 16 (2) ◽  
pp. 288-299 ◽  
Author(s):  
Huan Qi ◽  
Huiqiong Zhou ◽  
Daniel Mark Czajkowsky ◽  
Shujuan Guo ◽  
Yang Li ◽  
...  
Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 158
Author(s):  
Iris Celebi ◽  
Matthew T. Geib ◽  
Elisa Chiodi ◽  
Nese Lortlar Ünlü ◽  
Fulya Ekiz Kanik ◽  
...  

Protein microarrays have gained popularity as an attractive tool for various fields, including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity measurements in microarray format has become crucial. The preparation of microarray-based protein assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an active surface. The prohibitively high cost of equipment and the need for trained personnel to operate high complexity robotic spotters for microarray fabrication are significant detriments for researchers, especially for small laboratories with limited resources. Here, we present a low-cost, instrument-free dispensing technique by which users who are familiar with micropipetting can manually create multiplexed protein assays that show improved capture efficiency and noise level in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of manually and robotically dispensed α-lactalbumin probe spots by analyzing the binding kinetics obtained from the interaction with anti-α-lactalbumin antibodies, using the interferometric reflectance imaging sensor platform. We show that the protein arrays prepared by micropipette manual spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters. These instrument-free protein assays have a higher binding signal (~4-fold improvement) and a ~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by averaging 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate the potential of determining antigen-antibody binding coefficients in a 24-multiplexed chip format with less than 5% measurement error.


The Analyst ◽  
2014 ◽  
Vol 139 (6) ◽  
pp. 1303-1326 ◽  
Author(s):  
Valentin Romanov ◽  
S. Nikki Davidoff ◽  
Adam R. Miles ◽  
David W. Grainger ◽  
Bruce K. Gale ◽  
...  

Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis.


2006 ◽  
Vol 45 (26) ◽  
pp. 4286-4290 ◽  
Author(s):  
Po-Chiao Lin ◽  
Shau-Hua Ueng ◽  
Mei-Chun Tseng ◽  
Jia-Ling Ko ◽  
Kuo-Ting Huang ◽  
...  

2006 ◽  
Vol 118 (26) ◽  
pp. 4392-4396 ◽  
Author(s):  
Po-Chiao Lin ◽  
Shau-Hua Ueng ◽  
Mei-Chun Tseng ◽  
Jia-Ling Ko ◽  
Kuo-Ting Huang ◽  
...  

Langmuir ◽  
1998 ◽  
Vol 14 (15) ◽  
pp. 3971-3975 ◽  
Author(s):  
Brett D. Martin ◽  
Bruce P. Gaber ◽  
Charles H. Patterson ◽  
David C. Turner

2020 ◽  
Author(s):  
Iris Celebi ◽  
Matthew T. Geib ◽  
Elisa Chiodi ◽  
Nese Lortlar Ünlü ◽  
Fulya Ekiz Kanik ◽  
...  

Protein microarrays have gained popularity as an attractive tool for various fields, including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity measurements in microarray format has become crucial. The preparation of microarray-based protein assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an active surface. The prohibitively high cost of equipment and the need for trained personnel to operate high complexity robotic spotters for microarray fabrication are significant detriments for researchers, especially for small laboratories with limited resources. Here, we present a low-cost, instrument-free dispensing technique by which users who are familiar with micropipetting can manually create multiplexed protein assays that show improved capture efficiency and noise level in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of manually and robotically dispensed α-Lactalbumin probe spots by analyzing the binding kinetics obtained from the interaction with anti-α-Lactalbumin antibodies, using the interferometric reflectance imaging sensor platform. We show that the protein arrays prepared by micropipette manual spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters. These instrument-free protein assays have higher binding signal (~4-fold improvement) and a ~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by averaging of 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate the potential of determining antigen-antibody binding coefficients in 24-multiplexed chip format with less than 5% measurement error.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip Meade ◽  
Guillermina Kuan ◽  
Shirin Strohmeier ◽  
Hannah E. Maier ◽  
Fatima Amanat ◽  
...  

ABSTRACT In contrast to influenza virus vaccination, natural infection induces long-lived and relatively broad immune responses. However, many aspects of the antibody response to natural infection are not well understood. Here, we assessed the immune response after H1N1 influenza virus infection in children and adults in a Nicaraguan household transmission study using an influenza virus protein microarray (IVPM). This technology allows us to simultaneously measure IgG and IgA antibody responses to hemagglutinins of many different virus strains and subtypes quantitatively with a high throughput. We found that children under 6 years of age responded to natural infection with a relatively narrow response that targeted mostly the hemagglutinin of the strain that caused the infection. Adults, however, have a much broader response, including a boost in antibodies to many group 1 subtype hemagglutinins. Also, a strong recall response against historic H1 hemagglutinins that share the K133 epitope with the pandemic H1N1 virus was observed. Of note, some children, while responding narrowly within H1 and group 1 hemagglutinins, induced a boost to H3 and other group 2 hemagglutinins when infected with H1N1 when they had experienced an H3N2 infection earlier in life. This is an interesting phenomenon providing evidence for immune imprinting and a significant new insight which might be leveraged in future universal influenza virus vaccine strategies. Finally, preexisting immunity to pandemic H1 hemagglutinins was significantly associated with protection from infection in both children and adults. In adults, preexisting immunity to non-H1 group 1 hemagglutinins was also significantly associated with protection from infection. IMPORTANCE It is known since Thomas Francis, Jr. published his first paper on original antigenic sin in 1960 that the first infection(s) with influenza virus leaves a special immunological imprint which shapes immune responses to future infections with antigenically related influenza virus strains. Imprinting has been implicated in both protective effects as well as blunting of the immune response to vaccines. Despite the fact that this phenomenon was already described almost 60 years ago, we have very little detailed knowledge of the characteristics and breadth of the immune response to the first exposure(s) to influenza virus in life and how this compares to later exposure as adults. Here, we investigate these immune responses in detail using an influenza virus protein microarray. While our findings are mostly descriptive in nature and based on a small sample size, they provide a strong basis for future large-scale studies to better understand imprinting effects.


Sign in / Sign up

Export Citation Format

Share Document