A critical comparison of protein microarray fabrication technologies

The Analyst ◽  
2014 ◽  
Vol 139 (6) ◽  
pp. 1303-1326 ◽  
Author(s):  
Valentin Romanov ◽  
S. Nikki Davidoff ◽  
Adam R. Miles ◽  
David W. Grainger ◽  
Bruce K. Gale ◽  
...  

Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis.

2003 ◽  
Vol 2003 (5) ◽  
pp. 299-307 ◽  
Author(s):  
Weiping Shao ◽  
Zhimin Zhou ◽  
Isabelle Laroche ◽  
Hong Lu ◽  
Qiuling Zong ◽  
...  

Protein microarray-based approaches are increasingly being used in research and clinical applications to either profile the expression of proteins or screen molecular interactions. The development of high-throughput, sensitive, convenient, and cost-effective formats for detecting proteins is a necessity for the effective advancement of understanding disease processes. In this paper, we describe the generation of highly multiplexed, antibody-based, specific, and sensitive protein microarrays coupled with rolling-circle signal amplification (RCA) technology. A total of 150 cytokines were simultaneously detected in an RCA sandwich immunoassay format. Greater than half of these proteins have detection sensitivities in the pg/ml range. The validation of antibody microarray with human serum indicated that RCA-based protein microarrays are a powerful tool for high-throughput analysis of protein expression and molecular diagnostics.


Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 158
Author(s):  
Iris Celebi ◽  
Matthew T. Geib ◽  
Elisa Chiodi ◽  
Nese Lortlar Ünlü ◽  
Fulya Ekiz Kanik ◽  
...  

Protein microarrays have gained popularity as an attractive tool for various fields, including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity measurements in microarray format has become crucial. The preparation of microarray-based protein assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an active surface. The prohibitively high cost of equipment and the need for trained personnel to operate high complexity robotic spotters for microarray fabrication are significant detriments for researchers, especially for small laboratories with limited resources. Here, we present a low-cost, instrument-free dispensing technique by which users who are familiar with micropipetting can manually create multiplexed protein assays that show improved capture efficiency and noise level in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of manually and robotically dispensed α-lactalbumin probe spots by analyzing the binding kinetics obtained from the interaction with anti-α-lactalbumin antibodies, using the interferometric reflectance imaging sensor platform. We show that the protein arrays prepared by micropipette manual spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters. These instrument-free protein assays have a higher binding signal (~4-fold improvement) and a ~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by averaging 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate the potential of determining antigen-antibody binding coefficients in a 24-multiplexed chip format with less than 5% measurement error.


2004 ◽  
Vol 9 (8) ◽  
pp. 687-694 ◽  
Author(s):  
Yoonsuk Lee ◽  
Dong-Ku Kang ◽  
Soo-Ik Chang ◽  
Moon Hi Han ◽  
In-Cheol Kang

Protein microarray is an emerging technology that makes high-throughput analysis possible for protein-protein interactions and analysis of proteome and biomarkers in parallel. The authors investigated the application of a novel protein microarray chip, Proteo Chip, in new drug discovery. Integrin αvβ3 microarray immobilized on the Proteo Chip was employed to screen new active peptides against the integrin from multiple hexapeptide sublibraries of a positional scanning synthetic peptide combinatorial library (PS-SPCL). The integrin αvβ3-vitronectin interaction was successfully demonstrated on the integrin microarray in a dose-dependent manner andwas inhibited not only by the syntheticRGDpeptide but also by various integrin antagonists on the integrin microarray chip. Novel peptide ligands with high affinity to the integrin were also identified from the peptide libraries with this chip-based screening system by a competitive inhibition assay in a simultaneous and highthroughput fashion. The authors have confirmed antiangiogenic functions of the novel peptides thus screened through an in vitro and in vivo angiogenesis assay. These results provide evidence that the Proteo Chip is a promising tool for highthroughput screening of lead molecules in new drug development.


2020 ◽  
Author(s):  
Iris Celebi ◽  
Matthew T. Geib ◽  
Elisa Chiodi ◽  
Nese Lortlar Ünlü ◽  
Fulya Ekiz Kanik ◽  
...  

Protein microarrays have gained popularity as an attractive tool for various fields, including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity measurements in microarray format has become crucial. The preparation of microarray-based protein assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an active surface. The prohibitively high cost of equipment and the need for trained personnel to operate high complexity robotic spotters for microarray fabrication are significant detriments for researchers, especially for small laboratories with limited resources. Here, we present a low-cost, instrument-free dispensing technique by which users who are familiar with micropipetting can manually create multiplexed protein assays that show improved capture efficiency and noise level in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of manually and robotically dispensed α-Lactalbumin probe spots by analyzing the binding kinetics obtained from the interaction with anti-α-Lactalbumin antibodies, using the interferometric reflectance imaging sensor platform. We show that the protein arrays prepared by micropipette manual spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters. These instrument-free protein assays have higher binding signal (~4-fold improvement) and a ~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by averaging of 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate the potential of determining antigen-antibody binding coefficients in 24-multiplexed chip format with less than 5% measurement error.


2020 ◽  
Author(s):  
Iris Celebi ◽  
Matthew T. Geib ◽  
Elisa Chiodi ◽  
Nese Lortlar Ünlü ◽  
Fulya Ekiz Kanik ◽  
...  

Protein microarrays have gained popularity as an attractive tool for various fields, including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity measurements in microarray format has become crucial. The preparation of microarray-based protein assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an active surface. The prohibitively high cost of equipment and the need for trained personnel to operate high complexity robotic spotters for microarray fabrication are significant detriments for researchers, especially for small laboratories with limited resources. Here, we present a low-cost, instrument-free dispensing technique by which users who are familiar with micropipetting can manually create multiplexed protein assays that show improved capture efficiency and noise level in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of manually and robotically dispensed α-Lactalbumin probe spots by analyzing the binding kinetics obtained from the interaction with anti-α-Lactalbumin antibodies, using the interferometric reflectance imaging sensor platform. We show that the protein arrays prepared by micropipette manual spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters. These instrument-free protein assays have higher binding signal (~4-fold improvement) and a ~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by averaging of 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate the potential of determining antigen-antibody binding coefficients in 24-multiplexed chip format with less than 5% measurement error.


2020 ◽  
Author(s):  
Tate Oulton ◽  
Joshua Obiero ◽  
Isabel Rodriguez ◽  
Isaac Ssewanyana ◽  
Rebecca A Dabbs ◽  
...  

The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro Transcription/Translation (IVTT) systems (a similarly high-throughput protein expression method) are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on a protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from opposing expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clearly defined relationship between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.


2007 ◽  
Vol 06 (02) ◽  
pp. 109-116 ◽  
Author(s):  
ATHENA GUO ◽  
XIAOYANG ZHU

Protein microarray or protein chip is an important tool in proteomics. However, duplicating the success of the DNA chip for the protein chip has been difficult. This account discusses a key issue in protein microarray development, i.e., surface chemistry. Ideally, the surface chemistry for protein microarray fabrication should satisfy the following criteria: the surface resists nonspecific adsorption; functional groups for the facile immobilization of protein molecules of interest are readily available; bonding between a protein molecule and a solid surface is balanced to provide sufficient stability but minimal disturbance on the delicate three-dimensional structure of the protein; linking chemistry allows the control of protein orientation; the local chemical environment favors the immobilized protein molecules to retain their native conformation; and finally, the specificity of linking chemistry is so high that no pre-purification of proteins is required. Strategies to achieve such an ideal situation are discussed, with successful examples from our laboratories illustrated. Finally, the need of surface technology for membrane protein microarray fabrication is addressed.


2020 ◽  
Vol 16 (5) ◽  
pp. 666-674
Author(s):  
Amir M. Mortazavian ◽  
Najme Kheynoor ◽  
Zahra Pilevar ◽  
Zhaleh Sheidaei ◽  
Samira Beikzadeh ◽  
...  

The rheological analysis is important analytical tools used to obtain fundamental information about food structure. For instance, the properties of flow of liquid and semi-solidity are characterized by the consistency and flow behavior experiments as two important rheological parameters. The rheological parameters of foods are applied in quality control of the products and processing of food products such as energy input calculations, process design, equipment selection, and especially for deciding on heat exchangers and pumps. Steady flow behavior, oscillatory, and penetration tests are among commonly used parameters for evaluating rheological characteristics of ice cream. The purpose of this paper is to provide an overview of recent experiments and methods for measuring the rheological and texture properties of ice cream.


2015 ◽  
Vol 11 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Luciano Cardoso ◽  
Suellen Cordeiro ◽  
Marcio Fronza ◽  
Denise Endringer ◽  
Tadeu de Andrade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document