scholarly journals Proteome Turnover in the Spotlight: Approaches, Applications & Perspectives

2020 ◽  
pp. mcp.R120.002190
Author(s):  
Alison B. Ross ◽  
Julian David Langer ◽  
Marko Jovanovic

In all cells, proteins are continuously synthesized and degraded in order to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At steady state, protein turnover is constant to maintain protein homeostasis, but in dynamic responses, proteins change their rates of synthesis and degradation in order to adjust their proteomes to internal or external stimuli. Thus, probing the kinetics and dynamics of protein turnover lends insight into how cells regulate essential processes such as growth, differentiation, and stress response. Here we outline historical and current approaches to measuring the kinetics of protein turnover on a proteome-wide scale in both steady-state and dynamic systems, with an emphasis on metabolic tracing using stable-isotope-labeled amino acids. We highlight important considerations for designing proteome turnover experiments, key biological findings regarding the conserved principles of proteome turnover regulation, and future perspectives for both technological and biological investigation.

2020 ◽  
Vol 16 (12) ◽  
pp. e1008492
Author(s):  
Abhishek Mallela ◽  
Maulik K. Nariya ◽  
Eric J. Deeds

Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis.


2021 ◽  
Author(s):  
◽  
Kevin Klann

Correct cellular function is ensured by a complex network of proteins and enzymes, regulating protein synthesis and degradation. This protein network, maintaining the so-called protein homeostasis, regulates those processes on multiple levels, producing new or degrading old proteins to cope with changing intra- and extracellular environments. Disturbance of this tightly regulated machinery can have severe effects on the cell and can lead to a variety of pathologies on organism level. Diseases including cancer, neurodegeneration and infections are associated with causative or consequent alterations in protein homeostasis. To understand the pathologies of these diseases, it is therefore critical to examine how perturbations of protein homeostasis affect cellular pathways and physiology. In the recent years, analysis of protein homeostasis networks has resulted in the development of novel therapeutic approaches. However, for many factors it remains unclear how the cell is affected, if they are disturbed. Protein synthesis and degradation represent immediate responses of the cell to changes and need to be studied in the right timeframe, making them difficult to access by common methodology. In this work we developed a new mass spectrometry (MS) based method to study protein synthesis and degradation on a system-wide scale. Multiplexed enhanced protein dynamic (mePROD) MS was developed, overcoming these limitations by special sample mixing and novel data analysis protocols. MePROD thereby enables the measurement of rapid and transient (e.g. minutes) changes in protein synthesis of thousands of proteins. During responses of the cell to stressors (e.g. protein misfolding, oxidation or infection), two major pathways regulate the protein synthesis: the Integrated Stress Response (ISR) and mammalian target of rapamycin (mTOR). Both pathways have been connected with various diseases in the past and are common therapy targets. Although both pathways target protein synthesis in stress responses, the set of targets regulated by these pathways was believed to differ. Through the new mePROD MS method we could measure a comprehensive comparison of both pathways for the first time, revealing comparable system-wide patterns of regulation between the two pathways. This changed the current view on the regulation elicited by these pathways and furthermore represents a useful resource for the whole field of research. We could further develop the mePROD method and decrease MS measurement time needed to obtain an in-depth dataset. Through implementation of logic based instrument methods, it was possible to enhance the number of measured proteins by approximately three-fold within the same measurement time. The dynamics of protein synthesis and degradation are frequently modulated by pathogens infecting the cell to promote pathogen replication. At the same time, the cell counteracts the infection by modulating protein dynamics as well. To develop useful therapy approaches to fight infections, it therefore is necessary to understand the complex changes within the host cell during infections on a system-wide scale. In 2019, a novel coronavirus spread around the world, causing a world-wide health-crisis. To better understand this novel virus and its infection of the host cell we conducted a study applying the mePROD methodology and classical proteomics to characterize the dynamic changes during the infection course in vitro. We discovered that the infection remodeled a diverse set of host cell pathways (e.g. mRNA splicing, glycolysis, DNA synthesis and protein homeostasis) and thereby showed possible targets for antiviral therapy. By targeted inhibition of these pathways, we could observe that these pathways indeed are necessary for SARS-CoV-2 replication and their inhibition could reduce viral load in the cells. Another experimental approach focused on the dynamic changes of protein modification, namely phosphorylation, after infection with SARS-CoV-2. Here, we could show the very important participation of growth factor signaling pathways in viral proliferation. Both studies together revealed critical pathways that are needed for the viral proliferation and hence are promising candidates for further therapies. Subsequent targeting of these pathways by either already approved drugs (Ribavirin and Sorafenib) or drugs in clinical trials (2-deoxyglucose, Pladienolide-B, NMS-873, Pictilisib, Omipalisib, RO5126766 and Lonafarnib) could block viral replication in vitro and suggests important clinical approaches targeting SARS-COV-2 infection.


2019 ◽  
Author(s):  
Abhishek Mallela ◽  
Maulik K. Nariya ◽  
Eric J. Deeds

AbstractProtein turnover is vital to protein homeostasis within the cell. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Over three decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key to ultimately developing a global picture of protein homeostasis.


1982 ◽  
Vol 32 (6) ◽  
pp. 749-757 ◽  
Author(s):  
Ingrid W Reimann ◽  
Ulrich Klotz ◽  
Jürgen C Frölich

1984 ◽  
Vol 36 (3) ◽  
pp. 396-401 ◽  
Author(s):  
C H Kleinbloesem ◽  
J Van Harten ◽  
L G J de Leede ◽  
P van Brummelen ◽  
D D Breimer

2021 ◽  
Author(s):  
Hai Zhou ◽  
Haiping Wu ◽  
Jian Xu ◽  
Hongbin Fang

Abstract Origami-inspired structures and materials have shown remarkable properties and performances originating from the intricate geometries of folding. Origami folding could be a dynamic process and origami structures could possess rich dynamic characteristics under external excitations. However, the current state of dynamics of origami has mostly focused on the dynamics of a single cell. This research has performed numerical simulations on multi-stable dual-cell series Miura-Ori structures with different types of inter-cell connections based on a dynamic model that does not neglect in-plane mass. We introduce a concept of equivalent constraint stiffness k* to distinguish different types of inter-cell connections. Results of numerical simulations reveal the multi-stable dual-cell structure will exhibit a variety of complex nonlinear dynamic responses with the increasing of connection stiffness because of the deeper energy well it has. The connection stiffness has a strong effect on the steady-state dynamic responses under different excitation amplitudes and a variety of initial conditions. This effect makes us able to adjust the dynamic behaviors of dual-cell series Miura-Ori structure to our needs in a complex environment. Furthermore, the results of this research could provide us a theoretical basis for the dynamics of origami folding and serve as guidelines for designing dynamic applications of origami metastructures and metamaterials.


1988 ◽  
Vol 255 (3) ◽  
pp. E299-E305
Author(s):  
R. R. MacGregor ◽  
D. A. Hinton ◽  
R. D. Ridgeway

Bovine parathyroid organoids were cultured for up to 3 wk in medium containing 1.4 or 1.8 mM calcium. Steady-state secretion of parathyroid hormone and secretory protein I was two- to fourfold greater at 1.4 mM. At the end of culture, organoids were incubated 3.5 h in 1 or 2 mM calcium to examine maximum and minimum acute secretory rates. Relative to organoids cultured at 1.8 mM calcium, culture at 1.4 mM induced a hypersecretory state, i.e., both the maximum and minimum acute secretory rates of organoids previously cultured at 1.4 mM calcium were up to threefold greater than those of organoids previously at 1.8 mM calcium. Proparathyroid hormone synthesis was up to 50% greater in organoids cultured at 1.4 mM calcium, whereas secretory protein I and total protein synthesis were unaltered. The results showed that parathyroid hypersecretion can be induced by chronic hypocalcemic conditions in vitro. We conclude that the secretory adaptation to chronic hypocalcemia in vitro involves alterations in both synthesis and degradation of parathyroid hormone.


Sign in / Sign up

Export Citation Format

Share Document