polyubiquitin chain
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 17)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zhejian Ji ◽  
Hao Li ◽  
Daniele Peterle ◽  
Joao A Paulo ◽  
Scott B Ficarro ◽  
...  

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains, rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C-terminus through the central pore of the hexameric double-ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruona Shi ◽  
Xue Shi ◽  
Dajiang Qin ◽  
Shibing Tang ◽  
Michiel Vermeulen ◽  
...  

Abstract Background Linear ubiquitination is a novel type of ubiquitination that plays important physiological roles in signalling pathways such as tumour necrosis factor (TNF) signalling. However, little is known about the regulatory mechanisms of linear ubiquitination, except the well-described enzymatic regulators E3 ligase linear ubiquitin chain assembly complex (LUBAC) and deubiquitinase OTULIN. Results Previously, we identified SNX27, a member of the sorting nexin family protein, as a selective linear ubiquitin chain interactor in mass spectrometry-based ubiquitin interaction screening. Here, we demonstrated that the interaction between the linear ubiquitin chain and SNX27 is mediated by the OTULIN. Furthermore, we found that SNX27 inhibits LUBAC-mediated linear ubiquitin chain formation and TNFα-induced signalling activation. Mechanistic studies showed that, upon TNFα stimulation, OTULIN-SNX27 is localised to membrane-associated TNF receptor complex, where OTULIN deubiquitinates the linear polyubiquitin chain that formed by the LUBAC complex. Significantly, chemical inhibition of SNX27-retromer translocation by cholera toxin inhibits OTULIN membrane localization. Conclusions In conclusion, our study demonstrated that SNX27 inhibits TNFα induced NF-κB signalling activation via facilitating OTULIN to localize to TNF receptor complex.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008492
Author(s):  
Abhishek Mallela ◽  
Maulik K. Nariya ◽  
Eric J. Deeds

Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis.


2020 ◽  
Vol 477 (12) ◽  
pp. 2193-2219
Author(s):  
Hitendra Negi ◽  
Pothula Purushotham Reddy ◽  
Vineeth Vengayil ◽  
Chhaya Patole ◽  
Sunil Laxman ◽  
...  

The Baculoviridae family of viruses encode a viral Ubiquitin (vUb) gene. Though the vUb is homologous to the host eukaryotic Ubiquitin (Ub), its preservation in the viral genome indicates unique functions that are not compensated by the host Ub. We report the structural, biophysical, and biochemical properties of the vUb from Autographa californica multiple nucleo-polyhedrosis virus (AcMNPV). The packing of central helix α1 to the beta-sheet β1–β5 is different between vUb and Ub. Consequently, its stability is lower compared with Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin-binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54), and the deubiquitinating enzymes are ineffective against the K54-linked polyubiquitin chains. We propose that the modification of host/viral proteins with the K54-linked chains is an effective way selected by the virus to protect the vUb signal from host DeUbiquitinases.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 152
Author(s):  
Hirotaka Takahashi ◽  
Satoshi Yamanaka ◽  
Shohei Kuwada ◽  
Kana Higaki ◽  
Kohki Kido ◽  
...  

Protein ubiquitinations play pivotal roles in many cellular processes, including homeostasis, responses to various stimulations, and progression of diseases. Deubiquitinating enzymes (DUBs) remove ubiquitin molecules from ubiquitinated proteins and cleave the polyubiquitin chain, thus negatively regulating numerous ubiquitin-dependent processes. Dysfunctions of many DUBs reportedly cause various diseases; therefore, DUBs are considered as important drug targets, although the biochemical characteristics and cellular functions of many DUBs are still unclear. Here, we established a human DUB protein array to detect the activity and linkage specificity of almost all human DUBs. Using a wheat cell-free protein synthesis system, 88 full-length recombinant human DUB proteins were prepared and termed the DUB array. In vitro DUB assays were performed with all of these recombinant DUBs, using eight linkage types of diubiquitins as substrates. As a result, 80 DUBs in the array showed DUB activities, and their linkage specificities were determined. These 80 DUBs included many biochemically uncharacterized DUBs in the past. In addition, taking advantage of these active DUB proteins, we applied the DUB array to evaluate the selectivities of DUB inhibitors. We successfully developed a high-throughput and semi-quantitative DUB assay based on AlphaScreen technology, and a model study using two commercially available DUB inhibitors revealed individual selectivities to 29 DUBs, as previously reported. In conclusion, the DUB array established here is a powerful tool for biochemical analyses and drug discovery for human DUBs.


2020 ◽  
Vol 117 (20) ◽  
pp. 10778-10788 ◽  
Author(s):  
Jang-Hyun Oh ◽  
Ju-Yeon Hyun ◽  
Shun-Jia Chen ◽  
Alexander Varshavsky

The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal (Nt) residues. If a substrate bears, for example, Nt-Asn, its targeting involves deamidation of Nt-Asn, arginylation of resulting Nt-Asp, binding of resulting (conjugated) Nt-Arg to the UBR1-RAD6 E3-E2 ubiquitin ligase, ligase-mediated synthesis of a substrate-linked polyubiquitin chain, its capture by the proteasome, and substrate’s degradation. We discovered that the human Nt-Asn–specific Nt-amidase NTAN1, Nt-Gln–specific Nt-amidase NTAQ1, arginyltransferase ATE1, and the ubiquitin ligase UBR1-UBE2A/B (or UBR2-UBE2A/B) form a complex in which NTAN1 Nt-amidase binds to NTAQ1, ATE1, and UBR1/UBR2. In addition, NTAQ1 Nt-amidase and ATE1 arginyltransferase also bind to UBR1/UBR2. In the yeast Saccharomyces cerevisiae, the Nt-amidase, arginyltransferase, and the double-E3 ubiquitin ligase UBR1-RAD6/UFD4-UBC4/5 are shown to form an analogous targeting complex. These complexes may enable substrate channeling, in which a substrate bearing, for example, Nt-Asn, would be captured by a complex-bound Nt-amidase, followed by sequential Nt modifications of the substrate and its polyubiquitylation at an internal Lys residue without substrate’s dissociation into the bulk solution. At least in yeast, the UBR1/UFD4 ubiquitin ligase interacts with the 26S proteasome, suggesting an even larger Arg/N-degron–targeting complex that contains the proteasome as well. In addition, specific features of protein-sized Arg/N-degron substrates, including their partly sequential and partly nonsequential enzymatic modifications, led us to a verifiable concept termed “superchanneling.” In superchanneling, the synthesis of a substrate-linked poly-Ub chain can occur not only after a substrate’s sequential Nt modifications, but also before them, through a skipping of either some or all of these modifications within a targeting complex.


2020 ◽  
Vol 117 (14) ◽  
pp. 7776-7781 ◽  
Author(s):  
Matthew C. J. Yip ◽  
Nicholas O. Bodnar ◽  
Tom A. Rapoport

TheSaccharomyces cerevisiaeprotein Ddi1 and its homologs in higher eukaryotes have been proposed to serve as shuttling factors that deliver ubiquitinated substrates to the proteasome. Although Ddi1 contains both ubiquitin-interacting UBA and proteasome-interacting UBL domains, the UBL domain is atypical, as it binds ubiquitin. Furthermore, unlike other shuttling factors, Ddi1 and its homologs contain a conserved helical domain (helical domain of Ddi1, HDD) and a retroviral-like protease (RVP) domain. The RVP domain is probably responsible for cleavage of the precursor of the transcription factor Nrf1 in higher eukaryotes, which results in the up-regulation of proteasomal subunit genes. However, enzymatic activity of the RVP domain has not yet been demonstrated, and the function of Ddi1 remains poorly understood. Here, we show that Ddi1 is a ubiquitin-dependent protease, which cleaves substrate proteins only when they are tagged with long ubiquitin chains (longer than about eight ubiquitins). The RVP domain is inactive in isolation, in contrast to its retroviral counterpart. Proteolytic activity of Ddi1 requires the HDD domain and is stimulated by the UBL domain, which mediates high-affinity interaction with the polyubiquitin chain. Compromising the activity of Ddi1 in yeast cells results in the accumulation of polyubiquitinated proteins. Aside from the proteasome, Ddi1 is the only known endoprotease that acts on polyubiquitinated substrates. Ddi1 and its homologs likely cleave polyubiquitinated substrates under conditions where proteasome function is compromised.


2020 ◽  
Author(s):  
Tiaan Heunis ◽  
Frederic Lamoliatte ◽  
José Luis Marín-Rubio ◽  
Abeer Dannora ◽  
Matthias Trost

SummaryUbiquitylation is an elaborate post-translational modification involved in all biological processes. Its pleotropic effect is driven by the ability to form complex polyubiquitin chain architectures that can influence biological functions. In this study, we optimised sample preparation and chromatographic separation of Ubiquitin peptides for Absolute Quantification by Parallel Reaction Monitoring (Ub-AQUA-PRM). Using this refined Ub-AQUA-PRM assay, we were able to quantify all ubiquitin chain types in 10-minute LC-MS/MS runs. We used this method to determine the ubiquitin chain-linkage composition in murine bone marrow-derived macrophages and different mouse tissues. We could show tissue-specific differences in ubiquitin levels in murine tissues, with polyubiquitin chain types contributing a small proportion to the total pool of ubiquitin. Interestingly, we observed enrichment of atypical (K33) ubiquitin chains in heart and muscle. Our approach enabled high-throughput screening of ubiquitin chain-linkage composition in different murine tissues and highlighted a possible role for atypical ubiquitylation in contractile tissues.


Sign in / Sign up

Export Citation Format

Share Document