scholarly journals Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry

2019 ◽  
Vol 18 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
Sabine Amon ◽  
Fabienne Meier-Abt ◽  
Ludovic C. Gillet ◽  
Slavica Dimitrieva ◽  
Alexandre P. A. Theocharides ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4336-4336
Author(s):  
Leo D. Wang ◽  
Phi Nguyen ◽  
Scott B Ficarro ◽  
John Hutchinson ◽  
Oliver Hofmann ◽  
...  

Abstract Cellular functions are largely effected by proteins, but protein-level analysis of hematopoietic stem and progenitor cell (HSPC) functions has historically been challenged by the difficulty of performing comprehensive and robust proteomic studies of rare cell populations. To confront this challenge, we developed a novel nanoscale multidimensional mass spectrometry-based phosphoproteomic platform that allows, for the first time, comprehensive and unbiased analysis of the activated protein circuits in blood stem cells, as assessed by protein phosphorylation status. We used this platform to interrogate the proteomic features responsible for the growth and maintenance of hematopoietic progenitors. Our analysis pipeline is capable of returning 12,000 unique phosphopeptide sequences (corresponding to several thousand proteins) from an input of 400,000 FACS-sorted primary mouse HSPCs. Among these phosphorylated proteins, the novel Rac-GAP Arhgap25 emerged as an important regulator of mobilization in HSPCs. Arhgap25 is phosphorylated upon treatment of HSPCs with a standard cyclophosphamide-GCSF mobilization protocol. Germline deletion of Arhgap25 in mice impairs HSPC egress from the bone marrow, both at rest and after mobilizing stimuli. These findings validate the use of this platform in the discovery of new therapeutic targets in hematopoiesis, and present a clear pathway for identifying novel targets in other rare subsets of human progenitor cells, including leukemia stem cells. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 38 (2) ◽  
pp. 139-147
Author(s):  
Jan W. Gratama ◽  
D. Robert Sutherland ◽  
Michael Keeney

Leukemia ◽  
2021 ◽  
Author(s):  
Neta Nevo ◽  
Lizeth-Alejandra Ordonez-Moreno ◽  
Shiri Gur-Cohen ◽  
Francesca Avemaria ◽  
Suditi Bhattacharya ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S46
Author(s):  
Oakley Olson ◽  
Fernando Calero-Nieto ◽  
Xiaonan Wang ◽  
Bethold Göttgens ◽  
Emmanuelle Passegué

2020 ◽  
Vol 88 ◽  
pp. S40
Author(s):  
Paige Dausinas ◽  
Jacob Slack ◽  
Christopher Basile ◽  
Anish Karlapudi ◽  
Heather O'Leary

Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


Sign in / Sign up

Export Citation Format

Share Document