scholarly journals Translation as human–computer interaction

2012 ◽  
Vol 1 ◽  
pp. 101-122 ◽  
Author(s):  
Sharon O'Brien

This paper seeks to characterise translation as a form of human–computer interaction. The evolution of translator–computer interaction is explored, and the challenges and benefits are enunciated. The concept of cognitive ergonomics is drawn on to argue for a more caring and inclusive approach towards the translator by developers of translation technology. A case is also made for wider acceptance by the translation community of the benefits of the technology at their disposal and for more humanistic research on the impact of technology on the translator, the translation profession, and the translation process.

Author(s):  
Jerry Marstall ◽  
Michael E. Miller ◽  
Robert J. Poisson

“Lead, where are you going?” Considering this life-saving radio call from my wingman many nights ago, one may wonder how technology could provide every pilot with as vigilant a wingman within his or her own aircraft. Questions regarding this artificial wingman reach beyond its design to include “Is it appropriate or necessary to develop standard communication procedures for human–computer interaction?” and “Should the artificial wingman assume control?” As context-aware computing and automation appear in people’s lives, their ability to answer these and related questions will shape the impact of technology on safety and well-being.


2018 ◽  
Vol 09 (04) ◽  
pp. 841-848
Author(s):  
Kevin King ◽  
John Quarles ◽  
Vaishnavi Ravi ◽  
Tanvir Chowdhury ◽  
Donia Friday ◽  
...  

Background Through the Health Information Technology for Economic and Clinical Health Act of 2009, the federal government invested $26 billion in electronic health records (EHRs) to improve physician performance and patient safety; however, these systems have not met expectations. One of the cited issues with EHRs is the human–computer interaction, as exhibited by the excessive number of interactions with the interface, which reduces clinician efficiency. In contrast, real-time location systems (RTLS)—technologies that can track the location of people and objects—have been shown to increase clinician efficiency. RTLS can improve patient flow in part through the optimization of patient verification activities. However, the data collected by RTLS have not been effectively applied to optimize interaction with EHR systems. Objectives We conducted a pilot study with the intention of improving the human–computer interaction of EHR systems by incorporating a RTLS. The aim of this study is to determine the impact of RTLS on process metrics (i.e., provider time, number of rooms searched to find a patient, and the number of interactions with the computer interface), and the outcome metric of patient identification accuracy Methods A pilot study was conducted in a simulated emergency department using a locally developed camera-based RTLS-equipped EHR that detected the proximity of subjects to simulated patients and displayed patient information when subjects entered the exam rooms. Ten volunteers participated in 10 patient encounters with the RTLS activated (RTLS-A) and then deactivated (RTLS-D). Each volunteer was monitored and actions recorded by trained observers. We sought a 50% improvement in time to locate patients, number of rooms searched to locate patients, and the number of mouse clicks necessary to perform those tasks. Results The time required to locate patients (RTLS-A = 11.9 ± 2.0 seconds vs. RTLS-D = 36.0 ± 5.7 seconds, p < 0.001), rooms searched to find patient (RTLS-A = 1.0 ± 1.06 vs. RTLS-D = 3.8 ± 0.5, p < 0.001), and number of clicks to access patient data (RTLS-A = 1.0 ± 0.06 vs. RTLS-D = 4.1 ± 0.13, p < 0.001) were significantly reduced with RTLS-A relative to RTLS-D. There was no significant difference between RTLS-A and RTLS-D for patient identification accuracy. Conclusion This pilot demonstrated in simulation that an EHR equipped with real-time location services improved performance in locating patients and reduced error compared with an EHR without RTLS. Furthermore, RTLS decreased the number of mouse clicks required to access information. This study suggests EHRs equipped with real-time location services that automates patient location and other repetitive tasks may improve physician efficiency, and ultimately, patient safety.


2015 ◽  
Vol 1 (1) ◽  
pp. 12 ◽  
Author(s):  
Stuart Reeves

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>The human-computer interaction (HCI) has had a long and troublesome relationship to the role of ‘science’. HCI’s status as an academic object in terms of coherence and adequacy is often in question—leading to desires for establishing a true scientific discipline. In this paper I explore formative cognitive science influences on HCI, through the impact of early work on the design of input devices. The paper discusses a core idea that I argue has animated much HCI research since: the notion of scientific design spaces. In evaluating this concept, I disassemble the broader ‘picture of science’ in HCI and its role in constructing a disciplinary order for the increasingly diverse and overlapping research communities that contribute in some way to what we call ‘HCI’. In concluding I explore notions of rigour and debates around how we might reassess HCI’s disciplinarity.</span></p></div></div></div>


2009 ◽  
pp. 80-94
Author(s):  
Chris Baber

In this chapter the evaluation of human computer interaction (HCI) with mobile technologies is considered. The ISO 9241 notion of ‘context of use’ helps to define evaluation in terms of the ‘fitness-for-purpose’ of a given device to perform given tasks by given users in given environments. It is suggested that conventional notions of usability can be useful for considering some aspects of the design of displays and interaction devices, but that additional approaches are needed to fully understand the use of mobile technologies. These additional approaches involve dual-task studies in which the device is used whilst performing some other activity, and subjective evaluation on the impact of the technology on the person.


Sign in / Sign up

Export Citation Format

Share Document