Effects of in vitro tissue culture conditions and acclimatization on the contents of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio

2001 ◽  
Vol 158 (7) ◽  
pp. 835-840 ◽  
Author(s):  
Albert Premkumar ◽  
José A. Mercado ◽  
Miguel A. Quesada
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Renata Orłowska

Abstract Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.


2016 ◽  
Vol 127 (3) ◽  
pp. 543-559 ◽  
Author(s):  
Ileana Gatti ◽  
Fernanda Guindón ◽  
Carolina Bermejo ◽  
Andrea Espósito ◽  
Enrique Cointry

1928 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
J. G. H. FREW

In vitro tissue culture Is shown to be a possible mode of experimentation with the tissues of the Blow Fly larva. Methods are described- whereby the tissues, and the body fluids requisite as culture media may be obtained free from bacteria. The imperfections of the technique are noted and the conclusion reached that a successful technique must depend on the rearing of bacteria-free larvae, for which a method Is briefly outlined. It Is shown that progress in this part of the work must await further physiological knowledge, particularly in respect to the nature of the body fluids.


1995 ◽  
Vol 25 (7) ◽  
pp. 1103-1112 ◽  
Author(s):  
Sylvie Richard ◽  
Sylvie Gauthier ◽  
Sylvie Laliberté

The search for the occurrence of somaclonal variation of in vitro shoots and acclimatized plants of a hybrid larch (Larix × urolepis Henry) clone was performed by the analysis of eight isozyme systems. Cultures were established from short shoot buds of mature material. The effects of growth regulators in the media, subculture intervals, and periods in culture were analyzed for in vitro shoots. Variability was found in in vitro shoots but appeared to be related to a physiological response to culture conditions. Once acclimatized, most tissuecultured plants expressed the same enzymatic patterns as those of control plants (stecklings and the ortet). The variations observed for some acclimatized plants were also observed in control plants and were not related to ontogenic stage. Results from the isoenzymatic systems studied showed that hybrid larch plants regenerated from tissue culture were not significantly different from stecklings and the ortet.


2009 ◽  
Vol 59 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Almudena Montoliu ◽  
María F. López-Climent ◽  
Vicent Arbona ◽  
Rosa M. Pérez-Clemente ◽  
Aurelio Gómez-Cadenas

Genetika ◽  
2020 ◽  
Vol 52 (3) ◽  
pp. 925-941 ◽  
Author(s):  
Spela Mestinsek-Mubi ◽  
Sinja Svetik ◽  
Marko Flajsman ◽  
Jana Murovec

The species Cannabis sativa L. has recently witnessed a resurgence of interest all over the world due to its multipurpose applications and the scientific confirmation of its pharmacological properties. Genotypes with high cannabinoid content are appreciated in the pharmaceutical and cosmetic industries due to their therapeutic potential. These genotypes, with predominantly high cannabidiol (CBD) content, are the subject of research and breeding in several programs, but to date, little data is published on the in vitro tissue culture of cannabis. Our study focused on the establishment of an efficient micropropagation method for two high-CBD breeding lines (MX-CBD-11 and MX-CBD-707) as the basis for advanced biotechnological breeding approaches. The results demonstrated that the in vitro culture of medical cannabis can be initiated on different culture media, that cultured plants can be successfully acclimatized, and that nodal position, and especially the genotype, have a significant influence on the success of shoot culture establishment. They showed that the published tissue culture media optimized for one high-THC strain of Mexican cannabis are not as efficient for other genotypes of (medical) cannabis. We complemented this research with a genetic study of 95 plants of the two breeding lines with 16 microsatellite (SSR) markers which clustered the plants based on breeding line. The results demonstrated that only 8 markers are needed for discrimination of all analyzed plants and their usefulness for clonal identification.


Sign in / Sign up

Export Citation Format

Share Document