In vitro tissue culture in breeding programs of leguminous pulses: use and current status

2016 ◽  
Vol 127 (3) ◽  
pp. 543-559 ◽  
Author(s):  
Ileana Gatti ◽  
Fernanda Guindón ◽  
Carolina Bermejo ◽  
Andrea Espósito ◽  
Enrique Cointry
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Renata Orłowska

Abstract Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.


1928 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
J. G. H. FREW

In vitro tissue culture Is shown to be a possible mode of experimentation with the tissues of the Blow Fly larva. Methods are described- whereby the tissues, and the body fluids requisite as culture media may be obtained free from bacteria. The imperfections of the technique are noted and the conclusion reached that a successful technique must depend on the rearing of bacteria-free larvae, for which a method Is briefly outlined. It Is shown that progress in this part of the work must await further physiological knowledge, particularly in respect to the nature of the body fluids.


2009 ◽  
Vol 59 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Almudena Montoliu ◽  
María F. López-Climent ◽  
Vicent Arbona ◽  
Rosa M. Pérez-Clemente ◽  
Aurelio Gómez-Cadenas

Genetika ◽  
2020 ◽  
Vol 52 (3) ◽  
pp. 925-941 ◽  
Author(s):  
Spela Mestinsek-Mubi ◽  
Sinja Svetik ◽  
Marko Flajsman ◽  
Jana Murovec

The species Cannabis sativa L. has recently witnessed a resurgence of interest all over the world due to its multipurpose applications and the scientific confirmation of its pharmacological properties. Genotypes with high cannabinoid content are appreciated in the pharmaceutical and cosmetic industries due to their therapeutic potential. These genotypes, with predominantly high cannabidiol (CBD) content, are the subject of research and breeding in several programs, but to date, little data is published on the in vitro tissue culture of cannabis. Our study focused on the establishment of an efficient micropropagation method for two high-CBD breeding lines (MX-CBD-11 and MX-CBD-707) as the basis for advanced biotechnological breeding approaches. The results demonstrated that the in vitro culture of medical cannabis can be initiated on different culture media, that cultured plants can be successfully acclimatized, and that nodal position, and especially the genotype, have a significant influence on the success of shoot culture establishment. They showed that the published tissue culture media optimized for one high-THC strain of Mexican cannabis are not as efficient for other genotypes of (medical) cannabis. We complemented this research with a genetic study of 95 plants of the two breeding lines with 16 microsatellite (SSR) markers which clustered the plants based on breeding line. The results demonstrated that only 8 markers are needed for discrimination of all analyzed plants and their usefulness for clonal identification.


2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Kesiraju Karthik

Cotton (Gossypium spp.), is a mercantile crop plant is grown for its fluffy fiber and cotton seed oil in around 70 countries worldwide. Cotton is an economically important crop, shows erratic productivity under rain feed conditions; it is bogged down with many biotic and abiotic stresses. Due to lack of resistant germplasm, crop improvement through conventional breeding practices has been lagging. Genetic engineering offers numerous protocols to engineer plants to overcome stress. Biotechnological intervention for cotton improvement has begun three decades ago. The recalcitrance of cotton to tissue culture has been the major constraint for in vitro regeneration. Alternate methods that evade tissue culture regeneration steps have thus been envisaged. Till date there are very few standardized protocols that can be employed to develop transgenics in a genotype independent manner. Thus, genotype independent in planta transformation strategies have gained momentum in the present days, but reproducibility of reported protocols remains an amigna in many cases. In planta transformations holds prominence due to viability and ease in generation of transgenic cotton plants with in less time. This review focuses on grouping efforts made by different research groups in this senior. Several reports and standardizations have been focused that reports development of transgenic cotton.


2019 ◽  
Vol 140 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Piotr Tomasz Bednarek ◽  
Renata Orłowska

Abstract The in vitro tissue cultures are, beyond all difficulties, an essential tool in basic research as well as in commercial applications. Numerous works devoted to plant tissue cultures proved how important this part of the plant science is. Despite half a century of research on the issue of obtaining plants in in vitro cultures, many aspects remain unknown. The path associated with the reprogramming of explants in the fully functioning regenerants includes a series of processes that may result in the appearance of morphological, physiological, biochemical or, finally, genetic and epigenetic changes. All these changes occurring at the tissue culture stage and appearing in regenerants as tissue culture-induced variation and then inherited by generative progeny as somaclonal variation may be the result of oxidative stress, which works at the step of explant preparation, and in tissue culture as a result of nutrient components and environmental factors. In this review, we describe the current status of understanding the genetic and epigenetic changes that occur during tissue culture.


Sign in / Sign up

Export Citation Format

Share Document