Commercial use of fungi as plant disease biological control agents: status and prospects.

Author(s):  
J. M. Whipps ◽  
R. D. Lumsden
2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


2006 ◽  
Vol 96 (11) ◽  
pp. 1168-1174 ◽  
Author(s):  
P. S. Ojiambo ◽  
H. Scherm

Studies to evaluate the effectiveness of biological control in suppressing plant disease often report inconsistent results, highlighting the need to identify general factors that influence the success or failure of biological control in plant pathology. We conducted a quantitative synthesis of previously published research by applying meta-analysis to determine the overall effectiveness of biocontrol in relation to biological and application-oriented factors. For each of 149 entries (antagonist-disease combinations) from 53 reports published in Biological & Cultural Tests between 2000 and 2005, an effect size was calculated as the difference in disease intensity expressed in standard deviation units between the biocontrol treatment and its corresponding untreated control. Effect sizes ranged from -1.15 (i.e., disease strongly enhanced by application of the biocontrol agent) to 4.83 (strong disease suppression by the antagonist) with an overall weighted mean of 0.62, indicating moderate effectiveness on average. There were no significant (P >0.05) differences in effect sizes between entries from studies carried out in the greenhouse versus the field, between those involving soilborne versus aerial diseases, or among those carried out in conditions of low, medium, or high disease pressure (expressed relative to the disease intensity in the untreated control). However, effect sizes were greater on annual than on perennial crops, regardless of whether the analysis was carried out for all entries (P = 0.0268) or for those involving only soilborne diseases (P = 0.0343). Effect sizes were not significantly different for entries utilizing fungal versus bacterial biocontrol agents or for those targeting fungal versus bacterial pathogens. However, entries that used r-selected biological control agents (i.e., those having short generation times and producing large numbers of short-lived offspring) were more effective than those that applied antagonists that were not r-selected (P = 0.0312). Interestingly, effect sizes for entries that used Bacillus spp. as biological control agents were lower than for those that applied other antagonists (P = 0.0046 for all entries and P = 0.0114 for soilborne diseases). When only aerial diseases were considered, mean effect size was greater for entries that received one or two sprays than for those that received more than eight sprays of the biocontrol agent (P = 0.0002). This counterintuitive result may indicate that investigators often attempt unsuccessfully to compensate for anticipated poor performance in antagonist-disease combinations by making more applications.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ben Niu ◽  
Weixiong Wang ◽  
Zhibo Yuan ◽  
Ronald R. Sederoff ◽  
Heike Sederoff ◽  
...  

2019 ◽  
pp. 25-51 ◽  
Author(s):  
David B. Collinge ◽  
Hans J. L. Jørgensen ◽  
Meike A. C. Latz ◽  
Andrea Manzotti ◽  
Fani Ntana ◽  
...  

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Sign in / Sign up

Export Citation Format

Share Document