scholarly journals Water harvesting for improved rainfed agriculture in the dry environments.

Author(s):  
T. Oweis ◽  
A. Hachum
Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1308 ◽  
Author(s):  
Yitea Seneshaw Getahun ◽  
Ming-Hsu Li ◽  
Pei-Yuan Chen

Assessing future challenges in water resources management is crucial to the Melka Kuntrie (MK) subbasin suffering water shortage. Impact assessments are evaluated by the HBV hydrological model with six scenarios, including two GCMs of AR4-A2 and two GCMs of AR5-RCP4.5 and RCP8.5, for the time periods 2021–2050 and 2071–2100. Evapotranspiration is expected to increase under all scenarios—due to rising temperature—and induce more water stress on rainfed agriculture of the area. However, the increase in the monthly minimum temperature is beneficial to crops against chilling damages. Five out of six projections show significant increases of rainfall and streamflow in both annual and major rainy seasons, except ECHAM-A2. Annual rainfall (streamflow) is expected to increase by 38% (23%) and 57% (49%) during 2021–2050 and 2071–2100, respectively, under RCP8.5 scenarios. Greater flashflood risk is a concern because of the projected increase in streamflow. The projection of decreased streamflow with ECHAM-A2 will exacerbate the existing water shortage, especially in the minor rainy season. Water harvesting during the major rainy season would be vital to enhance water management capacities and reduce flashflood risks. Lacking sufficient hydraulic and irrigation infrastructures, the MK subbasin will be more vulnerable to the impacts of climate change.


1992 ◽  
Vol 21 (4) ◽  
pp. 271-277 ◽  
Author(s):  
K. B. Laryea

Cultivated rainfed agricultural lands contribute substantially to food production in the semi-arid tropics, but crop yields depend on the vagaries of the weather, particularly the variable onset and cessation of rainfall. Increased crop yields can be stabilized and the soil resource base conserved if runoff water from periodic intensive rainfall can be harvested, stored and used to supplement crop water requirements during periods of drought.


Waterlines ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 8-9
Author(s):  
Derek Ray
Keyword(s):  

Waterlines ◽  
2003 ◽  
Vol 22 (2) ◽  
pp. 19-21 ◽  
Author(s):  
Rafid Alkhaddar
Keyword(s):  

Author(s):  
Dipak b pawar ◽  
Prashant narote ◽  
Ganesh pawar ◽  
Tushar narote ◽  
Tejas Mhaske ◽  
...  

2019 ◽  
Vol 489 (5) ◽  
pp. 478-482
Author(s):  
K. A. Emelyanenko ◽  
S. N. Melnikov ◽  
P. I. Proshin ◽  
A. G. Domantovsky ◽  
A. M. Emelyanenko ◽  
...  

The creation of methods for complete and cost-effective collection of water droplets from an aerosol which arises as a by-product of the low-potential heat uptake from industrial devices, is one of the key tasks of rational use of water resources contributing to the improvement of the environment near large industrial enterprises. This paper shows how the application of materials with extreme wettability and a specific surface topography in spray separators can significantly increase the efficiency of water collection.


Sign in / Sign up

Export Citation Format

Share Document