Alectra vogelii (yellow witchweed).

Author(s):  
Charlie Riches

Abstract A. vogelii is an annual parasitic weed of legume crops, particularly cowpea and groundnut, in semi-arid areas of East, West, Central and Southern Africa. It is closely associated with cultivation, is occasionally found associated with weeds of fallows but rarely in natural vegetation. Copious seed production and a long-lived seed-bank allow the rapid build up of infestations when susceptible crop cultivars are planted. Tiny seeds are easily spread by wind, surface water flow or in crop seed. The genus Alectra is on the USDA Federal Noxious Weed list. Despite the similar life cycle to Striga species which are listed, and potential for crop damage, A. vogelii does not appear on Noxious weed lists in Australia. An assessment of its global invasive potential is given by Mohamed et al. (2006).

2015 ◽  
Vol 19 (10) ◽  
pp. 4183-4199 ◽  
Author(s):  
V. V. Camacho Suarez ◽  
A. M. L. Saraiva Okello ◽  
J. W. Wenninger ◽  
S. Uhlenbrook

Abstract. The understanding of runoff generation mechanisms is crucial for the sustainable management of river basins such as the allocation of water resources or the prediction of floods and droughts. However, identifying the mechanisms of runoff generation has been a challenging task, even more so in arid and semi-arid areas where high rainfall and streamflow variability, high evaporation rates, and deep groundwater reservoirs may increase the complexity of hydrological process dynamics. Isotope and hydrochemical tracers have proven to be useful in identifying runoff components and their characteristics. Moreover, although widely used in humid temperate regions, isotope hydrograph separations have not been studied in detail in arid and semi-arid areas. Thus the purpose of this study is to determine whether isotope hydrograph separations are suitable for the quantification and characterization of runoff components in a semi-arid catchment considering the hydrological complexities of these regions. Through a hydrochemical characterization of the surface water and groundwater sources of the catchment and two- and three-component hydrograph separations, runoff components of the Kaap catchment in South Africa were quantified using both isotope and hydrochemical tracers. No major disadvantages while using isotope tracers over hydrochemical tracers were found. Hydrograph separation results showed that runoff in the Kaap catchment is mainly generated by groundwater sources. Two-component hydrograph separations revealed groundwater contributions of between 64 and 98 % of total runoff. By means of three-component hydrograph separations, runoff components were further separated into direct runoff, shallow and deep groundwater components. Direct runoff, defined as the direct precipitation on the stream channel and overland flow, contributed up to 41 % of total runoff during wet catchment conditions. Shallow groundwater defined as the soil water and near-surface water component (and potentially surface runoff) contributed up to 45 % of total runoff, and deep groundwater contributed up to 84 % of total runoff. A strong correlation for the four studied events was found between the antecedent precipitation conditions and direct runoff. These findings suggest that direct runoff is enhanced by wetter conditions in the catchment that trigger saturation excess overland flow as observed in the hydrograph separations.


2015 ◽  
Vol 12 (1) ◽  
pp. 975-1015 ◽  
Author(s):  
V. V. Camacho ◽  
A. M. L Saraiva Okello ◽  
J. W. Wenninger ◽  
S. Uhlenbrook

Abstract. The understanding of runoff generation mechanisms is crucial for the sustainable management of river basins such as the allocation of water resources or the prediction of floods and droughts. However, identifying the mechanisms of runoff generation has been a challenging task, even more so in arid and semi-arid areas where high rainfall and streamflow variability, high evaporation rates, and deep groundwater reservoirs increase the complexity of hydrological process dynamics. Isotope and hydrochemical tracers have proven to be useful in identifying runoff components and their characteristics. Moreover, although widely used in humid-temperate regions, isotope hydrograph separations have not been studied in detail in arid and semi-arid areas. Thus the purpose of this study is to determine if isotope hydrograph separations are suitable for the quantification and characterization of runoff components in a semi-arid catchment considering the hydrological complexities of these regions. Through a hydrochemical characterization of the surface water and groundwater sources of the catchment and two and three component hydrograph separations, runoff components of the Kaap Catchment in South Africa were quantified using both, isotope and hydrochemical tracers. No major disadvantages while using isotope tracers over hydrochemical tracers were found. Hydrograph separation results showed that runoff in the Kaap catchment is mainly generated by groundwater sources. Two-component hydrograph separations revealed groundwater contributions between 64 and 98% of total runoff. By means of three-component hydrograph separations, runoff components were further separated into direct runoff, shallow and deep groundwater components. Direct runoff, defined as the direct precipitation on the stream channel and overland flow, contributed up to 41% of total runoff during wet catchment conditions. Shallow groundwater defined as the soil water and near-surface water component, contributed up to 45% of total runoff, and deep groundwater contributed up to 84% of total runoff. A strong correlation for the four studied events was found between the antecedent precipitation conditions and direct runoff. These findings suggest that direct runoff is enhanced by wetter conditions in the catchment which trigger saturation excess overland flow as observed in the hydrograph separations.


2012 ◽  
Vol 518-523 ◽  
pp. 4119-4125
Author(s):  
Jia Qiu Dong ◽  
Li He Yin

There is a close relationship between surface water and groundwater in semi-arid and arid areas of China, and thus researching on the interactions of them is of importance for reasonable water resources development. This paper took Bulang River basin as case study, analysis and discussion were conducted to water chemistry and isotopes tests results of water samples. The results show that surface water in Bulang River basin mainly relies on precipitation recharge, partially on groundwater recharge, the hydrochemistry type of surface water is mainly Ca-HCO3 with low salinity.


2010 ◽  
Vol 36 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Abderazak Djabeur ◽  
Meriem Kaid-Harche ◽  
Daniel Côme ◽  
Françoise Corbineau

Sign in / Sign up

Export Citation Format

Share Document