Hplc Determination of N-Acetylcysteine in Pharmaceutical Preparations After Pre-Column Derivatization With ThiolyteRMB Using Fluorescence Detection

1988 ◽  
Vol 21 (5) ◽  
pp. 741-757 ◽  
Author(s):  
W. Baeyens ◽  
G. Van Der Weken ◽  
B. Lin Ling ◽  
P. De Moerloose
Talanta ◽  
2008 ◽  
Vol 75 (2) ◽  
pp. 356-361 ◽  
Author(s):  
Constantinos K. Zacharis ◽  
Nikolaos Raikos ◽  
Nikolaos Giouvalakis ◽  
Helen Tsoukali-Papadopoulou ◽  
Georgios A. Theodoridis

2021 ◽  
Vol 12 (2) ◽  
pp. 168-178
Author(s):  
Mohamed Rizk ◽  
Ali Kamal Attia ◽  
Heba Yosry Mohamed ◽  
Mona Elshahed

A sensitive, accurate, and precise liquid chromatographic method has been developed and validated for the determination of Linagliptin (LNG) and Empagliflozin (EMP) in their combined tablets. Chromatographic separation was carried out on ODS-3 Inertsil® C18 column (150×4.6 mm, 5 µm). The mobile phase A (consisting of 0.30% Triethyl amine buffer (TEA) at pH = 4.5, adjusted using ortho-phosphoric acid); the mobile phase B (consisting of acetonitrile) was pumped through the column whose temperature was maintained at 40 °C, with a flow rate 1.7 mL/min, using gradient elution from 0-3 min A:B (75:25, v:v), then from 3-6 min the ratio changed to be A:B (60:40, v:v). Fluorescence detection (FLD) was performed at 410 nm after excitation at 239 nm. Acceptable linearity, accuracy and precision values of the proposed method were found over the concentration ranges of 0.5-15 µg/mL for LNG and 1.0-30 µg/mL for EMP with correlation coefficients of 0.9997 and 0.9998 in the case of LNG and EMP, respectively. The recoveries and relative standard deviations percentages were found in the following ranges: 98.56-101.85 and 0.53-1.52% for LNG and 98.00-101.95 and 0.31-1.05% for EMP. The detection and quantification limits were 0.15 and 0.45 µg/mL for LNG and 0.22 and 0.67 µg/mL for EMP. The optimized method was validated and proved to be specific, robust, accurate and reliable for the determination of the drugs in pure form or in their combined pharmaceutical preparations. No significant difference was found regarding accuracy and precision upon statistical comparison between the obtained results of the proposed method and those of the reported method. Furthermore, the proposed method is proved to be a stability-indicating assay after exposure of the studied drugs to variable forced degradation parameters, such as acidic, alkaline and oxidative conditions, according to the recommendations of the International Conference on Harmonization guidelines. The simplicity and selectivity of the proposed method allows its use in quality control laboratories.


2010 ◽  
Vol 172 (3-4) ◽  
pp. 409-417 ◽  
Author(s):  
Ewa Poboży ◽  
Edyta Król ◽  
Lena Wójcik ◽  
Mariusz Wachowicz ◽  
Marek Trojanowicz

2010 ◽  
Vol 93 (1) ◽  
pp. 97-101
Author(s):  
Michal Douša ◽  
Michaela Dubovská

Abstract A rapid procedure based on a direct extraction and HPLC determination of dihydroergocristine in a pharmaceutical preparation with fluorescence detection has been developed and validated. The optimized chromatographic conditions included a Purospher RP18e column, 5 µm particle size, 250 4.0 mm, and 25 mM potassium dihydrogen phosphate buffer (pH 2.8)acetonitrile (60 + 40, v/v) mobile phase at a flow rate of 1 mL/min. The separation was carried out at 50C, and the injection volume was 5 L. Fluorescence detection was performed at an excitation and emission wavelength of 224 and 344 nm, respectively. The mobile phase parameters such as organic solvent composition, temperature, and pH were studied. The proposed method has the advantages of a very simple sample pretreatment and fast HPLC determination.


Sign in / Sign up

Export Citation Format

Share Document