perfluorinated carboxylic acids
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
pp. DMD-AR-2021-000477
Author(s):  
Joe Jongpyo Lim ◽  
Youjun Suh ◽  
Elaine M Faustman ◽  
Julia Yue Cui

2021 ◽  
Author(s):  
Greylin Nielsen ◽  
Wendy J. Heiger-Bernays ◽  
Jennifer J. Schlezinger ◽  
Thomas F. Webster

AbstractHuman exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous, with mixtures of PFAS detected in drinking water, food, household dust, and other exposure sources. Animal toxicity studies and human epidemiology indicate that PFAS may act through shared mechanisms including activation of peroxisome proliferator activated receptor α (PPARα). However, the effect of PFAS mixtures on human relevant molecular initiating events remains an important data gap in the PFAS literature. Here, we tested the ability of modeling approaches to predict the effect of diverse PPARα ligands on receptor activity using Cos7 cells transiently transfected with a full length human PPARα (hPPARα) expression construct and a peroxisome proliferator response element-driven luciferase reporter. Cells were treated for 24 hours with two full hPPARα agonists (pemafibrate and GW7647), a full and a partial hPPARα agonist (pemafibrate and mono(2-ethylhexyl) phthalate), or a full hPPARα agonist and a competitive antagonist (pemafibrate and GW6471). Receptor activity was modeled with three additive approaches: effect summation, relative potency factors (RPF), and generalized concentration addition (GCA). While RPF and GCA accurately predicted activity for mixtures of full hPPARα agonists, only GCA predicted activity for full and partial hPPARα agonists and a full agonist and antagonist. We then generated concentration response curves for seven PFAS, which were well-fit with three-parameter Hill functions. The four perfluorinated carboxylic acids (PFCA) tended to act as full hPPARα agonists while the three perfluorinated sulfonic acids (PFSA) tended to act as partial agonists that varied in efficacy between 28-67% of the full agonist, positive control level. GCA and RPF performed equally well at predicting the effects of mixtures with three PFCAs, but only GCA predicted experimental activity with mixtures of PFSAs and a mixture of PFCAs and PFSAs at ratios found in the general population. We conclude that of the three approaches, GCA most accurately models the effect of PFAS mixtures on hPPARα activity in vitro.HighlightsPerfluorinated carboxylic acids are full human PPARα agonistsPerfluorinated sulfonic acids are partial human PPARα agonistsGCA predicts human PPARα activity for mixtures of full and partial agonistsGCA predicts human PPARα activity for mixtures of agonists and competitive antagonistsGCA accurately predicts human PPARα activity in response to PFAS mixtures


2020 ◽  
Vol 263 ◽  
pp. 114369
Author(s):  
Yukiko Fujii ◽  
Kouji H. Harada ◽  
Tsubasa Nakamura ◽  
Yoshihisa Kato ◽  
Chiho Ohta ◽  
...  

Toxics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Yukiko Fujii ◽  
Kouji H. Harada ◽  
Hatasu Kobayashi ◽  
Koichi Haraguchi ◽  
Akio Koizumi

Perfluoroalkyl carboxylic acids (PFCAs), such as perfluorooctanoic acid (PFOA, C8), are a group of industrial chemicals that are detected in the serum of people throughout the world. Long-chain PFCAs (C9 to C13) have high lipophilicity, therefore they may have a high transfer rate to breast milk. This study investigated the lactational transfer of PFCAs with carbon chain lengths of 8 to 13 in mice. Lactating dams were given a single intravenous administration of PFCAs (C8 to C13) during the postnatal period (8–13 days after delivery). Milk was collected from the dam 24 h after administration using a milking device built in-house. Plasma was obtained from the dam at the same time as milk collection. The observed milk/plasma (M/P) concentration ratios were 0.32 for C8, 0.30 for C9, 0.17 for C10, 0.21 for C11, 0.32 for C12, and 0.49 for C13. These results indicate that the M/P concentration ratio is not related to the lipophilicity of PFCAs. However, estimated relative daily intake, an indicator of how much PFCA is transferred from dams to pups per body weight, increased with chain length: 4.16 for C8, 8.98 for C9, 9.35 for C10, 9.51 for C11, 10.20 for C12, and 10.49 for C13, which may be related to the lower clearance of long-chain PFCAs. These results indicate the importance of future risk assessment of long-chain PFCAs.


2020 ◽  
Vol 12 (31) ◽  
pp. 3944-3953 ◽  
Author(s):  
Li Yong ◽  
Manting Huang ◽  
Yuchen Wei ◽  
Jie Xu ◽  
Zhongsheng Yi

Here, perfluorobutyric acid (PFBA), perfluorooctanoic acid (PFOA) and perfluorododecanoic acid (PFDoA) were selected as typical representatives of perfluorinated carboxylic acids (PFCAs) to study the effects of PFCAs on the G protein-coupled estrogen receptor (GPER).


Sign in / Sign up

Export Citation Format

Share Document