Symmetry and monotonicity of positive solutions for a Choquard equation with the fractional Laplacian

Author(s):  
Xiaoshan Wang ◽  
Zuodong Yang
2021 ◽  
Vol 19 (1) ◽  
pp. 259-267
Author(s):  
Liuyang Shao ◽  
Yingmin Wang

Abstract In this study, we consider the following quasilinear Choquard equation with singularity − Δ u + V ( x ) u − u Δ u 2 + λ ( I α ∗ ∣ u ∣ p ) ∣ u ∣ p − 2 u = K ( x ) u − γ , x ∈ R N , u > 0 , x ∈ R N , \left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where I α {I}_{\alpha } is a Riesz potential, 0 < α < N 0\lt \alpha \lt N , and N + α N < p < N + α N − 2 \displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2} , with λ > 0 \lambda \gt 0 . Under suitable assumption on V V and K K , we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ → 0 \lambda \to 0 .


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2016 ◽  
Vol 5 (1) ◽  
pp. 57-74 ◽  
Author(s):  
Jacques Giacomoni ◽  
Pawan Kumar Mishra ◽  
K. Sreenadh

AbstractWe study the existence of positive solutions for fractional elliptic equations of the type (-Δ)1/2u = h(u), u > 0 in (-1,1), u = 0 in ℝ∖(-1,1) where h is a real valued function that behaves like eu2 as u → ∞ . Here (-Δ)1/2 is the fractional Laplacian operator. We show the existence of mountain-pass solution when the nonlinearity is superlinear near t = 0. In case h is concave near t = 0, we show the existence of multiple solutions for suitable range of λ by analyzing the fibering maps and the corresponding Nehari manifold.


2019 ◽  
Vol 21 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Ran Zhuo ◽  
Yan Li

We study Navier problems involving the higher-order fractional Laplacians. We first obtain nonexistence of positive solutions, known as the Liouville-type theorems, in the upper half-space [Formula: see text] by studying an equivalent integral form of the fractional equation. Then we show symmetry for positive solutions on [Formula: see text] through a delicate iteration between lower-order differential/pseudo-differential equations split from the higher-order equation.


2018 ◽  
Vol 20 (04) ◽  
pp. 1750040 ◽  
Author(s):  
Huyuan Chen ◽  
Feng Zhou

Our purpose of this paper is to study the isolated singularities of positive solutions to Choquard equation in the sublinear case [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] is the Riesz potential, which appears as a nonlocal term in the equation. We investigate the nonexistence and existence of isolated singular solutions of Choquard equation under different range of the pair of exponent [Formula: see text]. Furthermore, we obtain qualitative properties for the minimal singular solutions of the equation.


Filomat ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1795-1807
Author(s):  
Lijuan Liu

We consider the fractional Laplacian with positive Dirichlet data { (-?)?/2 u = ?up in ?, u > 0 in ?, u = ? in Rn\?, where p > 1,0 < ? < min{2,n}, ? ? Rn is a smooth bounded domain, ? is a nonnegative function, positive somewhere and satisfying some other conditions. We prove that there exists ?* > 0 such that for any 0 < ? < ?*, the problem admits at least one positive classical solution; for ? > ?*, the problem admits no classical solution. Moreover, for 1 < p ? n+?/n-?, there exists 0 < ?? ? ?* such that for any 0 < ? < ??, the problem admits a second positive classical solution. From the results obtained, we can see that the existence results of the fractional Laplacian with positive Dirichlet data are quite different from the fractional Laplacian with zero Dirichlet data.


Sign in / Sign up

Export Citation Format

Share Document