Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents

2019 ◽  
pp. 1-18 ◽  
Author(s):  
Li Wang ◽  
Binlin Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yong Wu ◽  
Zhenhua Qiao ◽  
Mohamed Karim Hamdani ◽  
Bingyu Kou ◽  
Libo Yang

This paper is concerned with an elliptic system of Kirchhoff type, driven by the variable-order fractional p x -operator. With the help of the direct variational method and Ekeland variational principle, we show the existence of a weak solution. This is our first attempt to study this kind of system, in the case of variable-order fractional variable exponents. Our main theorem extends in several directions previous results.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yating Guo ◽  
Guoju Ye

In this paper, the variable-order fractional Laplacian equations with variable exponents and the Kirchhoff-type problem driven by p · -fractional Laplace with variable exponents were studied. By using variational method, the authors obtain the existence and uniqueness results.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1393
Author(s):  
Weichun Bu ◽  
Tianqing An ◽  
José Vanteler da C. Sousa ◽  
Yongzhen Yun

In this article, we first obtain an embedding result for the Sobolev spaces with variable-order, and then we consider the following Schrödinger–Kirchhoff type equations a+b∫Ω×Ω|ξ(x)−ξ(y)|p|x−y|N+ps(x,y)dxdyp−1(−Δ)ps(·)ξ+λV(x)|ξ|p−2ξ=f(x,ξ),x∈Ω,ξ=0,x∈∂Ω, where Ω is a bounded Lipschitz domain in RN, 1<p<+∞, a,b>0 are constants, s(·):RN×RN→(0,1) is a continuous and symmetric function with N>s(x,y)p for all (x,y)∈Ω×Ω, λ>0 is a parameter, (−Δ)ps(·) is a fractional p-Laplace operator with variable-order, V(x):Ω→R+ is a potential function, and f(x,ξ):Ω×RN→R is a continuous nonlinearity function. Assuming that V and f satisfy some reasonable hypotheses, we obtain the existence of infinitely many solutions for the above problem by using the fountain theorem and symmetric mountain pass theorem without the Ambrosetti–Rabinowitz ((AR) for short) condition.


Author(s):  
Ghania Benhamida ◽  
Toufik Moussaoui

In this paper, we use the genus properties in critical point theory to prove the existence of infinitely many solutions for fractional [Formula: see text]-Laplacian equations of Schrödinger-Kirchhoff type.


Geophysics ◽  
2021 ◽  
pp. 1-74
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Lei Wen ◽  
Subin Zhuang

We propose a new time-domain viscoacoustic wave equation for simulating wave propagation in anelastic media. The new wave equation is derived by inserting the complex-valued phase velocity described by the Kjartansson attenuation model into the frequency-wavenumber domain acoustic wave equation. Our wave equation includes one second-order temporal derivative and two spatial variable-order fractional Laplacian operators. The two fractional Laplacian operators describe the phase dispersion and amplitude attenuation effects, respectively. To facilitate the numerical solution for the proposed wave equation, we use the arbitrary-order Taylor series expansion (TSE) to approximate the mixed domain fractional Laplacians and achieve the decoupling of the wavenumber and the fractional order. Then the proposed viscoacoustic wave equation can be directly solved using the pseudospectral method (PSM). We adopt a hybrid pseudospectral/finite-difference method (HPSFDM) to stably simulate wave propagation in arbitrarily complex media. We validate the high accuracy of the proposed approximate dispersion term and approximate dissipation term in comparison with the accurate dispersion term and accurate dissipation term. The accuracy of numerical solutions is evaluated by comparison with the analytical solutions in homogeneous media. Theory analysis and simulation results show that our viscoacoustic wave equation has higher precision than the traditional fractional viscoacoustic wave equation in describing constant- Q attenuation. For a model with Q < 10, the calculation cost for solving the new wave equation with TSE HPSFDM is lower than that for solving the traditional fractional-order wave equation with TSE HPSFDM under the high numerical simulation precision. Furthermore, we demonstrate the accuracy of HPSFDM in heterogeneous media by several numerical examples.


Sign in / Sign up

Export Citation Format

Share Document