scholarly journals Inverter current control for reactive power compensation in solar grid system using Self-Tuned Fuzzy Logic Controller

Automatika ◽  
2021 ◽  
Vol 63 (1) ◽  
pp. 102-121
Author(s):  
R. Nirmala ◽  
S. Venkatesan

A doubly-fed induction generator (DFIG) applied to wind power generation driven by wind turbine is under study for low voltage ride-through application during system unbalance. Use of DFIG in wind turbine is widely spreading due to its control over DC voltage and active and reactive power. Conventional dq axis current control using voltage source converters for both the grid side and the rotor side of the DFIG are analyzed and simulated. An improved control and operation of DFIG system under unbalanced grid voltage conditions by coordinating the control of both the rotor side converter (RSC) and the grid side converter (GSC) is done in this thesis. Simulation and analysis of DFIG system with wind turbine using Fuzzy logic controller for RSC and GSC under unbalanced condition is presented in the positive synchronous reference frame. The common DC-link voltage is controlled by grid side converter and control of DFIG’s stator output active and reactive power is controlled by rotor side converter. The steady-state operation of the DFIG and its dynamic response to voltage sag resulting from a remote fault on the 120-kV system is shown in this thesis using controllers. Modeling of DFIG system under Fuzzy logic controller to control voltage and active-reactive powers is done using MATLAB/SIMULINK.


Author(s):  
A. N. Madhavanunni ◽  
Jithin Baby ◽  
S. S. Arya ◽  
Jisha George ◽  
Jobin George ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


2014 ◽  
Vol 530-531 ◽  
pp. 1022-1025
Author(s):  
Yan Xie ◽  
Ya Ne Liao ◽  
Hong Xie

This paper introduced a new modular multi-level converter (MMC), which could enhance the voltage and power level by sub-converter modules in series and was easy to extend to any level of output. Its structure and working mechanism were described. By analyzing the performance of STATCOM based on MMC working conditions in the reactive power compensation, this paper studied compensation control theory in reactive changing conditions. To obtain compensation control response speed faster and better compensation effect, a compensation control strategy was proposed based on direct current control mode. The simulation results show the strategy has a better tracking precision and response speed for the reactive power compensation.


Sign in / Sign up

Export Citation Format

Share Document