Numerical Simulation of Marine Diesel Engine Combustion and Emissions Using Intake Air Humidification at the Different Injection Timing

Author(s):  
Tianjia Zhou ◽  
Peng Geng ◽  
Xiuwei Lu
2013 ◽  
Vol 291-294 ◽  
pp. 1920-1924
Author(s):  
Min Xiao ◽  
Hui Chen

The KIVA-3V program was used to make numerical simulation for L21/31 type of medium-speed marine diesel engine about the NOx emissions and the affection of NOx changing process on different variable parameters under the Tier Ⅱstandard. On this basis, a discussion towards the NOx emission of the model fueling with dimethyl ether (DME) to meet the Tier Ⅲ standard is offered. The results show that reducing the intake temperature, load and speed, postponing the fuel injection timing and intake lag angle properly can decrease the NOx emissions within the limits of NOx in TierⅡ standard. Comparing the results of the numerical simulation of DME and diesel fuel, the NOx emission of the former one is 60.85% of the latter one, and the NOx emission of changing variable parameters on DME engine is 35.56% of the original type of diesel engine, very close to the Tier Ⅲ.


1991 ◽  
Vol 34 (6) ◽  
pp. 538-543
Author(s):  
Koji OYAMA ◽  
Masanori SEKIMOTO ◽  
Hiroshi ARAKI

2020 ◽  
Vol 8 (2) ◽  
pp. 109 ◽  
Author(s):  
María Isabel Lamas Galdo ◽  
Laura Castro-Santos ◽  
Carlos G. Rodriguez Vidal

This work analyzes NOx reduction in a marine diesel engine using ammonia injection directly into the cylinder and compares this procedure with water injection. A numerical model based on the so-called inert species method was applied. It was verified that ammonia injection can provide almost 80% NOx reduction for the conditions analyzed. Furthermore, it was found that the effectiveness of the chemical effect using ammonia is extremely dependent on the injection timing. The optimum NOx reduction was obtained when ammonia is injected during the expansion stroke, while the optimum injection timing using water is near top dead center. Chemical, thermal, and dilution effects of both ammonia and water injection were compared. The chemical effect was dominant in the case of ammonia injection. On the other hand, water injection reduces NOx through dilution and, more significantly, through a thermal effect.


2018 ◽  
Vol 8 (12) ◽  
pp. 2489 ◽  
Author(s):  
Yu Ding ◽  
Congbiao Sui ◽  
Jincheng Li

The marine diesel engine combustion process is discontinuous and unsteady, resulting in complicated simulations and applications. When the diesel engine is used in the system integration simulation and investigation, a suitable combustion model has to be developed due to compatibility to the other components in the system. The Seiliger process model uses finite combustion stages to perform the main engine combustion characteristics and using the cycle time scale instead of the crank angle shortens the simulation time. Obtaining the defined Seiliger parameters used to calculate the engine performance such as peak pressure, temperature and work is significant and fitting process has to be carried out to get the parameters based on experimental investigation. During the combustion fitting, an appropriate mathematics approach is selected for root finding of non-linear multi-variable functions since there is a large amount of used experimental data. A direct injection marine engine test bed is applied for the experimental investigation based on the combustion fitting approach. The results of each cylinder and four-cylinder averaged pressure signals are fitted with the Seiliger process that is shown separately to obtain the Seiliger parameters, and are varied together with these parameters and with engine operating conditions to provide the basis for engine combustion modeling.


2019 ◽  
Author(s):  
Frengki Mohamad Felayati ◽  
Semin ◽  
Muhammad Badrus Zaman ◽  
Ayudhia Pangestu Gusti

Sign in / Sign up

Export Citation Format

Share Document