Effects of Conjunctive Use of Organic and Inorganic Sources of Nutrients on Soil Quality Indicators and Soil Quality Index in Sole Maize, Maize + Soybean, and Sole Soybean Cropping Systems in Hot Semi-arid Tropical Vertisol

2014 ◽  
Vol 45 (16) ◽  
pp. 2118-2140 ◽  
Author(s):  
K. L. Sharma ◽  
G. R. Maruthi Shankar ◽  
D. Suma Chandrika ◽  
J. Kusuma Grace ◽  
S. K. Sharma ◽  
...  
Soil Research ◽  
2006 ◽  
Vol 44 (3) ◽  
pp. 245 ◽  
Author(s):  
Mingxiang Xu ◽  
Yunge Zhao ◽  
Guobin Liu ◽  
Robert M. Argent

Soil quality in the hilly Loess Plateau region of China is seriously degraded due to hillside cultivation and severe soil erosion. No established methods are available for evaluating the regional soil quality nor has integrated soil quality assessment been conducted in the region. Our objectives were to (i) develop soil quality models and assessment methods, (ii) verify the representativeness of selected soil quality indicators, and (iii) evaluate landuse effects on regional soil quality. The research was conducted on 707 km2 of typical hilly Loess Plateau in Shaanxi province, China. Soil samples (total 208) were taken from 5 catchments under 10 different landuse types. Two integrated evaluation methods (weighted summation and weighted product) and 2 indicator sets (a whole and a minimum set) were tested, each producing a soil quality index. Quantitative evaluation of soil quality in different landuse types was also performed. The results showed that the weighted product method provided better differentiation of soil quality between landuses. The minimum indicator set of 8 soil quality indicators, selected by factor analysis from a complete set of 29 soil attributes, reflected all or most of the information of the whole set in assessing regional soil quality. Soil quality index (SQI) values under different landuse types ranged from 0.842 for natural woodland to 0.150 for orchard. Index values for orchard, cropland, revegetated grassland, and planted grassland were significantly less than those for 6 other landuse types, whereas planted shrubland, planted woodland, and natural grassland indices were significantly less than those for greenhouse, natural shrubland, and natural woodland. No significant difference in SQI was found between orchard, cropland, revegetated grassland, and planted grassland, or between planted shrubland and planted woodland. Overall, it was found that soil quality was generally poor across the region, except for natural woodland, shrubland and greenhouse areas.


2019 ◽  
Vol 45 (2) ◽  
pp. 687 ◽  
Author(s):  
J. Rodrigo-Comino ◽  
A. Keshavarzi ◽  
A. Bagherzadeh ◽  
E.C. Brevik

Several methods have been used to model reality and explain soil pedogenesis and evolution. However, there is a lack of information about which soil properties truly condition soil quality indicators and indices particularly at the pedon scale and at different soil depths to be used in land management planning. Thus, the main goals of this research were: i) to assess differences in soil properties (particle size, saturation point, bulk density, soil organic carbon, pH and electrical conductivity) at different soil depths (0-30 and 30-60 cm); ii) to check their statistical correlation with soil quality indicators (CEC, total N, Olsen-P, available K, exchangeable Na, calcium carbonate equivalent, Fe, Mn, Zn, and Cu); and, iii) to elaborate a soil quality index and maps for each soil layer. To achieve this, forty-eight soil samples were analysed in the laboratory and subjected to statistical analyses by ANOVA, Spearman Rank coefficients and Principal Component Analyses. Finally, a soil quality index was developed based on indicators of sensitivity. The study was conducted in a semiarid catchment in northeast Iran with irrigated farming and well-documented land degradation issues. We found that: i) organic carbon and bulk density were not similar in the topsoil and subsoil; ii) calcium carbonate and sand content conditioned organic carbon content and bulk density; iii) organic carbon showed the highest correlations with soil quality indicators; iv) particle size conditioned cation-exchange capacity; and, v) heavy metals such as Mn and Cu were highly correlated with organic carbon due to non-suitable agricultural practices. Based on the communality analysis to map of soil quality, CEC, Mn, Zn, and Cu had the highest weights (≥0.11) at both depths, coinciding with the same level of relevance in the multivariate analysis. Exchangeable Na, CaCO3, and Fe had the lowest weights (≤0.1) and N, P, and K had intermediate weights (0.1- 0.11). In general, the map of the soil quality index shows a lower soil quality in the subsoil increment than in the topsoil.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ahmed M. Saleh ◽  
Mohamed M. Elsharkawy ◽  
Mohamed A. E. AbdelRahman ◽  
Sayed M. Arafat

Egypt is currently witnessing an extensive desert greening plan with a target of adding one and a half million feddans to the agricultural area. The present study evaluates the soil quality in the western desert fringes of the Nile Delta using three indicator datasets, which involve the total dataset (TDS), the minimum dataset (MDS), and the expert dataset (EDS). Three quality index models are included: the Additive Soil Quality Index (SQI-A), the Weighted Additive Soil Quality Index (SQI-W), and the Nemoro Soil Quality Index (SQI-N). Linear and nonlinear scoring functions are evaluated for scoring soil and terrain indicators. Thirteen soil quality indicators and three terrain indicators were measured in 397 sampling sites for soil quality evaluation. Factor analyses determined five soil and terrain indicators for the minimum dataset and their associated weights. The linear scoring functions reflected the soil system functions more than nonlinear scoring functions. Soil quality estimation by the minimum dataset (MDS) and Weighted Additive Soil Quality Index (SQI-W) is more sensitive than that by SQI-A and SQI-N quality models to explain soil quality indicators. The moderate soil quality grade is the largest quality grade in the studied area. The minimum dataset of soil quality indicators could assist in reducing time and cost of evaluating soil quality and monitoring the temporal changes in soil quality of the region due to the increased agricultural development.


2021 ◽  
Vol 8 (2) ◽  
pp. 527-537
Author(s):  
Mochamad Fikri Kurniawan ◽  
Mochtar Lutfi Rayes ◽  
Christanti Agustina

Soil quality is the ability of soil that plays a role in maintaining plant productivity, preserving and maintaining water availability and supporting human activities. Soil quality assessment is measured based on indicators that describe important soil processes based on the physical, chemical and biological properties of the soil. The level of soil quality in a plot of land is assessed based on the soil quality index. This research was conducted from August to December 2020 in the Supiturung Micro Watershed, Kediri Regency, East Java using a graphical survey method based on the Land Map Unit. Soil samples were taken at a depth of 0-20 cm at each observation point (20 points) for analysis in the laboratory. Soil quality indicators are determined based on key soil properties with the Minimum Data Set (MDS) method, with soil quality indicators from soil physical properties including texture, bulk density, porosity and soil chemical properties including pH, available-P, exchangeable-K, total-N, organic-C. Soil quality index was calculated by weighting soil quality indicators with criteria which divided into 5 classes, i.e. (i) very low class (0.00-0.19), (ii) low (0.20-0.39), (iii) moderate (0.40-0.59), (iv) good (0.60-0.79) and (v) very good (0.80-1.00). The results showed that the soil in land unit 2 had different limiting factor values on the percentage of sand and dust from the soil texture, the total-N content of the soil and the organic-C content of the soil which caused differences in soil quality. There are two indicators of soil quality, namely the percentage of dust from the soil texture and the total N content of the soil which has the most influence on the soil quality index.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sheikh M. Fazle Rabbi ◽  
Bina R. Roy ◽  
M. Masum Miah ◽  
M. Sadiqul Amin ◽  
Tania Khandakar

A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field and to construct a physical soil quality index (SQIP) map. Surface soil samples were collected using10  m×10 m grid from an Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity, saturated hydraulic conductivity (KS), and aggregate stability (measured as mean weight diameter, MWD) were determined. The spatial structures of sand, clay, andKSwere moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production. The transformed indicators were the combined into SQIP. The kriged SQIPmap showed that the agricultural field studied could be divided into two parts having “good physical quality” and “poor physical soil quality.”


2020 ◽  
Vol 12 (4) ◽  
pp. 148
Author(s):  
S. Muwanga ◽  
R. Onwonga ◽  
S. O. Keya ◽  
E. Komutunga

Uganda Government embarked on promoting sedentary agriculture in Karamoja agro-pastoral semi-arid livelihood zone, which experience rapid environmental and high soil quality (SQ) decline. However, studies on sedentary agriculture’s impact on soil quality using farmer’s knowledge is limited. Consequently, a survey was carried out in Karamoja (Iriiri, Matany Sub-counties of Napak of districts and Rengen sub-county of Kotido) to determine the soil quality indicator parameters based on the farmers knowledge in order to build a local soil knowledge data base to better inform sustainable land use strategies. Using a semi-structured questionnaire, forty indigenous farmers per sub-county, were interviewed between August and September, 2015. The study took into account the social demographic characteristics of the people, farming enterprises, methods of crops production, crops yields trends, causes of the perceived yields trends and soil quality indicators. Prospects of developing Karamoja indigenous knowledge data base lies in visible feature that predict soil quality. Farmers used 36 parameters to determine SQ. The parameters were clustered into five categories; soil, crop, biological, environmental and management each category contributing to 42, 19,14,8 and 17% of the total indicators, respectively. The relationship between age group and the perceived indicators of soil fertility was statistically significant (p-value = 0.045) with the majority stating that they use either soil colour, soil depth or soil texture to express the fertility of soil. The farmer’s soil quality indicators assessed in this study, is important in establishing indigenous-scientific hybrid knowledge data base to enhance soil fertility maintenance and better inform policy makers and other stakeholders on development of sustainable land use strategies.


Author(s):  
H. Feng ◽  
G. O. Abagandura ◽  
S. Senturklu ◽  
D. G. Landblom ◽  
L. Lai ◽  
...  

Abstract Increasing crop diversity has been highly recommended because of its environmental and economic benefits. However, the impacts of crop diversity on soil properties are not well documented. Thus, the present study was conducted to assess the impacts of crop diversity on selected soil quality indicators. The cropping systems investigated here included wheat (Triticum aestivum L.) grown continuously for 5 years as mono-cropping (MC), and a 5-year cropping sequence [(wheat–cover crop (CC)–corn (Zea mays L.)–pea (Pisum sativum L.) and barley (Hordeum vulgare L.)–sunflower (Helianthus annuus L.)]. Each crop was present every year. This study was conducted in the northern Great Plains of North America, and soil quality data were collected for 2016 and 2017. Selected soil quality indicators that include: soil pH, organic carbon (SOC), cold water-extractable C (CWC) and N (CWN), hot water-extractable C (HWC) and N (HWN), microbial biomass carbon (MBC), bulk density (BD), water retention (SWR), wet soil aggregate stability (WAS), and urease and β-glucoside enzyme activity were measured after the completion of 5-year rotation cycle and the following year. Crop diversity did not affect soil pH, CWC, CWN, HWC, HWN and SWR. Cropping systems that contained CC increased SOC at shallow depths compared to the systems that did not have CC. Crop diversity increased WAS, MBC, and urease and β-glucoside enzyme activity compared with the MC. Comparison of electrical conductivity (EC) measured in this study to the baseline values at the research site prior to the establishment of treatments revealed that crop rotation decreased EC over time. Results indicate that crop diversity can improve soil quality, thus promoting sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document