Studies on temporal variation of Colwell soil‐test phosphorus measured on soil samples collected from November to March in south‐western Australia

1995 ◽  
Vol 26 (11-12) ◽  
pp. 1947-1961 ◽  
Author(s):  
M.D.A. Bolland
2007 ◽  
Vol 87 (1) ◽  
pp. 73-83 ◽  
Author(s):  
D. Kimaragamage ◽  
O O Akinremi ◽  
D. Flaten ◽  
J. Heard

Quantitative relationships between soil test phosphorus (STP) methods are needed to guide P management especially in manured soils with high P. Our objectives were: (i) to compare amounts of P extracted by different methods; (ii) to develop and verify regression equations to convert results among methods; and (iii) to establish environmental P thresholds for different methods, in manured and non-manured soils of Manitoba. We analyzed 214 surface soil samples (0–15 cm), of which 51 had previous manure application. Agronomic STP methods were Olsen (O-P), Mehlich-3 (M3-P), Kelowna-1 (original; K1-P), Kelowna-2 (modified; K2-P), Kelowna-3 (modified; K3-P), Bray-1 (B1-P) and Miller and Axley (MA-P), while environmental STP methods were water extractable (W-P), Ca Cl2 extractable (Ca-P) and iron oxide impregnated filter paper (FeO-P) methods. The different methods extracted different amounts of P, but were linearly correlated. For an O-P range of 0–30 mg kg-1, relationships between O-P and other STP were similar for manured and nonmanured soils, but the relationships diverged at higher O-P levels, indicating that one STP cannot be reliably converted to another using a single equation for manured and non-manured soils at environmentally critical P levels (0–100 mg kg-1 O-P). Suggested environmental soil P threshold ranges, in mg P kg-1, were 88–118 for O-P, 138–184 for K1-P, 108–143 for K2-P, 103–137 for K3-P, 96–128 for B1-P, 84–111 for MA-P, 15–20 for W-P, 5–8 for Ca-P and 85–111 for FeO-P. Key words: Phosphorus, soil test phosphorus, manured soils, non-manured soils, environmental threshold


Soil Research ◽  
1996 ◽  
Vol 34 (2) ◽  
pp. 243
Author(s):  
MDA Bolland ◽  
DG Allen

Five levels of phosphorus (P), as powdered single superphosphate, were incubated in moist soil (field capacity) for 42 days at 50�C in six different soils collected from south-western Australia. The soils were then air-dried for 7 days. Some subsamples of air-dry soil were stored for 180 days at 0�C in a cold room. Other subsamples were stored at fluctuating room temperature (18–25�C) in a laboratory and were sampled at 30, 60, 120, 150 and 180 days after storage to measure bicarbonate-extractable P (soil-test P) by the Olsen and Colwell procedures. No changes in soil-test P were detected while air-dry soil samples were stored at 0�C or room temperature.


2009 ◽  
Vol 49 (2) ◽  
pp. 121 ◽  
Author(s):  
M. D. A. Bolland ◽  
I. F. Guthridge

Rain-fed dairy pastures on sandy soils common in the high rainfall (>800 mm annual average) Mediterranean-type climate of south-western Australia comprise the annual species subterranean clover (Trifolium subterraneum L.) and annual and Italian ryegrass (Lolium rigidum Gaud. and L. multiflorum Lam.). In wet years, clover becomes potassium (K) deficient and shows large dry matter (DM) responses to applied fertiliser K due to leaching of K in soil by rainfall. In contrast, ryegrass rarely shows DM responses to applied K. Many dairy pastures in the region are now intensively grazed to maximise pasture use for milk production, and nitrogen (N) fertiliser is applied after each grazing. It is not known if frequent applications of fertiliser N to these pastures changes pasture DM responses to applied K. Therefore, a long-term (2002–07) field experiment was undertaken on an intensively grazed dairy pasture in the region to quantify pasture DM responses to applied fertiliser K with or without applications of adequate fertiliser N (141–200 kg N/ha per year). Soil samples (top 10 cm of soil) were collected from each plot of the experiment each February to measure soil test K by the standard Colwell sodium bicarbonate procedure used for both K and phosphorus soil testing in the region. When no N was applied, pasture comprised ~70% (dry weight basis) clover and 25% ryegrass, compared with ~70% ryegrass and 25% clover when adequate N was applied. Significant linear responses of pasture DM to applied K occurred in 3 of the 6 years of the experiment only when no N was applied and clover dominated the pasture. The largest response varied from ~1.7 to 2.0 t/ha DM consumed by dairy cows at all grazings in each year, giving a K response efficiency of between 8 and 10 kg DM/ha per kg K/ha applied. Significant pasture DM responses to applied N occurred at all grazings in each year, with ~2–3 t/ha extra DM consumed by dairy cows at all grazings in each year being produced when a total of 141–200 kg N/ha was applied per year, giving an N response efficiency of ~7–19 kg DM/ha per kg N/ha applied. Soil test K values were very variable, attributed to varying proportions of soil samples per plot collected between and within cow urine patches, containing much K, arbitrarily deposited on experimental plots during grazing. Soil test K values were not significantly affected by the rates of K applied per year. A re-evaluation of results from the major soil K test study conducted for pastures in the region confirm that ryegrass rarely showed DM responses to applied K, and that for clover, soil K testing poorly predicted the likelihood of K deficiency in the next growing season.


Soil Research ◽  
2003 ◽  
Vol 41 (6) ◽  
pp. 1185 ◽  
Author(s):  
M. D. A. Bolland ◽  
D. G. Allen ◽  
K. S. Walton

Soil samples were collected from 14 long-term field experiments in south-western Australia to which several amounts of superphosphate or phosphate rock had been applied in a previous year. The samples were analysed for phosphorus (P) by the Colwell sodium bicarbonate procedure, presently used in Western Australia, and the Mehlich 3 procedure, being assessed as a new multi-element test for the region. For the Mehlich procedure, the concentration of total and inorganic P in the extract solution was measured. The soil test values were related to yields of crops and pasture measured later on in the year in which the soil samples were collected.The Mehlich 3 procedures (Mehlich 3 total and Mehlich 3 inorganic soil test P values) were similar, with the total values mostly being slightly larger. For soil treated with superphosphate, for each year of each experiment: (i) Mehlich 3 values were closely correlated with Colwell values; and (ii) the relationship between plant yield and soil test P (the soil P test calibration) was similar for the Colwell and Mehlich 3 procedures. However, for soil treated with phosphate rock, the Colwell procedure consistently produced lower soil test P values than the Mehlich 3 procedure, and the calibration relating plant yield to soil test P was different for the Colwell and Mehlich 3 procedures, indicating, for soils treated with phosphate rock, separate calibrations are required for the 2 procedures. We conclude that for soils of south-western Australia treated with superphosphate (most of the soils), the Mehlich 3 procedure can be used instead of the Colwell procedure to measure soil test P, providing support for the Mehlich 3 procedure to be developed as the multi-element soil test for the region.


2006 ◽  
Vol 46 (8) ◽  
pp. 1051 ◽  
Author(s):  
M. D. A. Bolland ◽  
R. F. Brennan

Plant testing of wheat crops in south-western Australia, sown using no-till for >7 years, often indicates marginal to deficient levels of the soil immobile elements phosphorus (P), copper (Cu) and zinc (Zn). In this region, P, Cu and Zn fertilisers are usually placed (drilled) with the seed while sowing crops. However, in no-till cropping, because the fertilisers are placed in the same rows as the seed during sowing, in the years after application the 3 elements are no longer mixed through the top 10 cm of soil. It may be more effective to deep band fertiliser below seed while sowing no-till crops. Alternatively, cultivating the top 10 cm of soil every 5–7 years would mix previously applied fertiliser P, Cu and Zn through the topsoil, which should improve the effectiveness of the fertiliser residues for the current and subsequent no-till crops. In field experiments in paddocks in south-western Australia sown using no-till for 7–11 years, we compared these 2 alternative methods to the standard no-till practice of drilling fertiliser with the seed in the same crop rows. No shoot or grain yield responses of wheat were obtained. The exception was that in 1 experiment cultivating the topsoil before drilling P with seed was more effective than drilling or deep banding P. Concentrations of P, Cu and Zn measured in wheat shoots or grain were either unaffected by treatment, or, compared with drilling fertiliser with seed, were larger for the other 2 methods, indicating these 2 methods were more effective at increasing the concentrations of the elements in plant parts. The 3 elements have been shown to have good residual values for crop production in the region. Therefore, we recommend that experiments should not be performed in existing no-till paddocks until the residual value of P, Cu and Zn applied in the old cropping system has become negligible, which could, for Cu and Zn in particular, take many years. In the second year, the experiments were used to compare 4 different ways of collecting soil samples from the top 10 cm of soil (standard soil sampling depth used in south-western Australia) to measure soil test P (Colwell), Cu (ammonium oxalate) and Zn (DTPA). The samples were either collected randomly within the plots (present method), always in the rows used to sow seed and apply fertiliser, always between the rows, or half in and half between the rows. Soil test values for P, Cu and Zn were unaffected by amount of element applied and method of application when samples were collected between rows, at random, or from all banded treatments where fertiliser was placed below the 0–10 cm sampling depth. Soil test values for samples collected in rows increased as the amount of fertiliser applied increased and were about double the values for samples collected half in and half between rows.


2018 ◽  
Vol 218 ◽  
pp. 158-170 ◽  
Author(s):  
Theresa Zicker ◽  
Sabine von Tucher ◽  
Mareike Kavka ◽  
Bettina Eichler-Löbermann

2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


1994 ◽  
Vol 45 (1) ◽  
pp. 53-57
Author(s):  
M.D.A. BOLLAND ◽  
J. DHALIWAL ◽  
J.W. BOWDEN ◽  
D.G. ALLEN

Sign in / Sign up

Export Citation Format

Share Document