Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design

Ergonomics ◽  
2017 ◽  
Vol 60 (8) ◽  
pp. 1158-1172 ◽  
Author(s):  
Yue Chen ◽  
Qin Gao ◽  
Fei Song ◽  
Zhizhong Li ◽  
Yufan Wang
Author(s):  
Roger Lew ◽  
Ronald L. Boring ◽  
Thomas A. Ulrich

The United States (U.S.) has 99 operating Nuclear Power Plants (NPPs). The majority of these were designed and commissioned in the 1970s and 1980s. Plants are modernizing their control systems and main control rooms to be able to continue operating past their original 40-year license agreements. U.S. NPP main control rooms are migrating towards hybrid controls with both digital and analog systems. Digital upgrades, while costly, provide improved reliability, reduced maintenance cost, and the potential for fewer unplanned outages and fewer human errors. U.S. utilities have been slow to embrace computerized procedure system (CBP) research, even though CBPs demonstrate clear operational and human factors benefits. Most of the CBP research has been oriented to new reactor designs or full digital control rooms and is not applicable to the piecemeal modernization approach favored by U.S. plants. Research is needed to examine how CBPs impact operations in hybrid control rooms, and how current paper based procedures can be efficiently migrated to computerized platforms. Work is underway to develop tools and perform the obligatory research needed to design and validate CBPs for modernized U.S. nuclear control rooms.


2018 ◽  
Vol 48 (4) ◽  
pp. 408-414 ◽  
Author(s):  
Sean William Kortschot ◽  
Greg A. Jamieson ◽  
Cole Wheeler

1981 ◽  
Vol 25 (1) ◽  
pp. 12-12
Author(s):  
Steven M. Pine

The accident at Three Mile Island (TMI) has underscored the need for human factors review and analysis of Nuclear Control Rooms. Virtually every study of the TMI debacle has come to the conclusion that one of the major contributors of the accident was poor human engineering. In recognition of this fact, the nuclear industry, through its research institutes, has initiated a series of research programs designed to provide individual utilities with guidelines on how to apply human factors principles and criteria to improve the safety and performance of their nuclear facilities. The present paper reports on one of the major studies being undertaken by the Electric Power Research Institute (EPRI) in the area. The objective of this research project is to identify and prioritize the existing Human Engineering Discrepancies (HEDs) in nuclear control rooms and to develop retrofits for correcting these HEDs that can be implemented during normal plant operation or during planned outages. Data was collected during one week visits to five power plants. Structured interviews, checklists, task analyses, surveys (noise, light, etc.) and procedural walk-throughs/talk-throughs were employed to assess the design and layout of the control rooms. In depth analyses of these data led to the identification of numerous HEDs. A prioritization scheme was developed to determine the relative seriousness of these HEDs and to rank alternative retrofit solutions in terms of cost and feasibility. The results revealed fairly wide variance in the extent to which control rooms violate human factors principles. The most frequent areas in which violations were found are labeling, alarm/display systems, functional grouping, design conventions, and anthropometric limits. Numerous HEDs along with alternative retrofits are shown and discussed. Emphasis is given to cost and engineering consideration in selecting appropriate backfits.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5061
Author(s):  
Raluca Buzatu ◽  
Viorel Ungureanu ◽  
Adrian Ciutina ◽  
Mihăiţă Gireadă ◽  
Daniel Vitan ◽  
...  

The building sector continues to register a significant rise in energy demand and environmental impact, notably in developing countries. A considerable proportion of this energy is required during the operational phase of buildings for interior heating and cooling, leading to a necessity of building performance improvement. A holistic approach in building design and construction represents a step to moderate construction costs in conjunction with reduced long-term operating costs and a low impact on the environment. The present paper presents an experimental evaluation of the energy efficiency of a building under real climate conditions; the building, which represents a holistically designed modular laboratory, is located in a moderate continental temperate climate, characteristic of the south-eastern part of the Pannonian Depression, with some sub-Mediterranean influences. Considerations for the holistic design of the building, including multi-object optimization and integrated design with a high regard for technology and operational life are described. The paper provides a genuine overview of the energy efficiency response of the building during six months of operational use through a monitored energy management system. The energetic analysis presented in the paper represents an intermediary stage as not all the energetic users were installed nor all the energetic suppliers. However, the results showed a reliable thermal response in the behaviour of recycled-PET thermal wadding used as insulation material in the building and for the intermediary stage in which the building has only secondary energy users, the energetic balance proves its efficiency, keeping the buffer stock of energy high values over 90%.


2011 ◽  
Vol 1 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Sandrina Ritzmann ◽  
Annette Kluge ◽  
Vera Hagemann ◽  
Margot Tanner

Recurrent training of cabin crew should include theoretical and practical instruction on safety as well as crew resource management (CRM) issues. The endeavors of Swiss International Air Lines Ltd. and Swiss Aviation Training Ltd. to integrate CRM and safety aspects into a single training module were evaluated. The objective of the integration was to make CRM more tangible and ease acquisition of competencies and transfer of CRM training content to practice by showing its relevance in relation to safety tasks. It was of interest whether the integrated design would be mirrored in a more favorable perception by the trainees as measured with a questionnaire. Participants reacted more positively to the integrated training than to stand-alone CRM training, although the integrated training was judged as being slightly more difficult and less oriented toward instructional design principles. In a range of forced-choice questions, the majority of participants opted for an integrated training format because it was seen as livelier and more interesting and also more practically relevant. For the forthcoming training cycle, a better alignment of training with instructional principles and an even higher degree of training integration by using simulator scenarios are striven for.


Sign in / Sign up

Export Citation Format

Share Document