X-ray room temperature structure from single crystal data, powder diffraction measurements and optical studies of the aurivillius phase Bi5(Ti3Fe)O15

1992 ◽  
Vol 129 (1) ◽  
pp. 101-112 ◽  
Author(s):  
F. Kubel ◽  
H. Schmid
2002 ◽  
Vol 17 (3) ◽  
pp. 244-246
Author(s):  
Ailette Aguila Tobien ◽  
Peter Varlashkin

The current JCPDS powder pattern for the racemic compound fenoprofen calcium dihydrate (card No. 44-1790) is unindexed. Previously we reported the single crystal data, determined at −100 °C, for this material (Zhu et al., 2001). Using 2θ values obtained from a powder pattern spiked with internal standards, we indexed the room temperature powder pattern. The resulting unit cell values for the monoclinic P21/n cell are a=19.018 Å, b=7.738 Å, c=19.472 Å, β=91.66°.


1994 ◽  
Vol 9 (3) ◽  
pp. 194-199
Author(s):  
Hoong-Kun Fun ◽  
Ping Yang ◽  
Rusli Othman ◽  
Tsong-Jen Lee ◽  
Chiou-Chu Lai ◽  
...  

The crystalline structure of new TlSr2PrCu207−x was obtained at room temperature (300 K) and low temperature (100 K) from X-ray powder diffraction with CuKα radiation using Rietveld analysis. TlSr2PrCu207−x has an isotypical structure with TlBa2CaCu207 (1212). At 300 K, crystal data: Tl0.864Sr2PrCu2O6.75, Mr=727.811, the tetragonal system, P4/mmm, a =3.85404(5) Å, c = 12.1046(2) Å, V=179.80 Å3, Z=1, Dx =6.7218 g cm−3, μ =1143.922 cm−1 (λ = 1.54051 Å), F(000)=317.0, the structure was refined with 28 parameters to Rwp=5.29%, Rp = 3.65% for 3551 step intensities and Rb=7.40%, Rf=639% for 155 peaks, “goodness of fit” 5=3.05. At 100 K, crystal data: Tl0.858Sr2PrCu2O6.61, Mr=724.345, the tetragonal system, P4/mmm, a =3.84872(6) Å, c = 12.0771(3) Å, V=178.89 Å3, Z=1, Dx=6.7235 g cm−3, μ=1146.939 cm−1 (λ= 1.54051 Å), F(000) = 315.4, the structure was refined with 26 parameters to Rwp=6.70%, Rp=5.11% for 2926 step intensities and Rb=7.83%, Rf=6.70% for 131 peaks, “goodness of fit” S = 1.75.


1994 ◽  
Vol 27 (5) ◽  
pp. 359-364 ◽  
Author(s):  
E Blanc ◽  
H.-B Bürgi ◽  
R Restori ◽  
D Schwarzenbach ◽  
P Stellberg ◽  
...  

1998 ◽  
Vol 54 (1) ◽  
pp. 18-28 ◽  
Author(s):  
D. L. Corker ◽  
A. M. Glazer ◽  
W. Kaminsky ◽  
R. W. Whatmore ◽  
J. Dec ◽  
...  

The room-temperature crystal structure of the perovskite lead hafnate PbHfO3 is investigated using both low-temperature single crystal X-ray diffraction (Mo Kα radiation, λ = 0.71069 Å) and polycrystalline neutron diffraction (D1A instrument, ILL, λ = 1.90788 Å). Single crystal X-ray data at 100 K: space group Pbam, a = 5.856 (1), b = 11.729 (3), c = 8.212 (2) Å, V = 564.04 Å3 with Z = 8, μ = 97.2 mm−1, F(000) = 1424, final R = 0.038, wR = 0.045 over 439 reflections with F >1.4σ(F). Polycrystalline neutron data at 383 K: a = 5.8582 (3), b = 11.7224 (5), c = 8.2246 (3) Å, V = 564.80 Å3 with χ2 = 1.62. Although lead hafnate has been thought to be isostructural with lead zirconate, no complete structure determination has been reported, as crystal structure analysis in both these materials is not straightforward. One of the main difficulties encountered is the determination of the oxygen positions, as necessary information lies in extremely weak l = 2n + 1 X-ray reflections. To maximize the intensity of these reflections the X-ray data are collected at 100 K with unusually long scans, a procedure which had previously been found successful with lead zirconate. In order to establish that no phase transitions exist between room temperature and 100 K, and hence that the collected X-ray data are relevant to the room-temperature structure, birefringence measurements for both PbZrO3 and PbHfO3 are also reported.


1994 ◽  
Vol 9 (2) ◽  
pp. 84-86 ◽  
Author(s):  
J. Ll. Tamarit ◽  
N. B. Chanh ◽  
P. Négrier ◽  
D. O. López ◽  
M. Barrio ◽  
...  

By means of X-ray single crystal Weissenberg photographs, the crystal of the low-temperature solid form of 2-methyl-2-nitro-propanol, (CH3)2C(NO2)(CH2OH), has been determined and found to be of the monoclinic type, space group P21/c. The cell constants were refined from X-ray powder diffraction data: a=6.195(3) Å, b=19.116(7) Å, c=16.598(7) Å, and β = 90.12(2)° with Z = 12. The indexed pattern at 293 K is given.


2013 ◽  
Vol 69 (11) ◽  
pp. 1229-1233 ◽  
Author(s):  
Jacco van de Streek ◽  
Jukka Rantanen ◽  
Andrew D. Bond

The crystal structure of cefradine dihydrate, C16H19N3O4S·2H2O, is considered in the pharmaceutical sciences to be the epitome of an isolated-site hydrate. The structure from single-crystal X-ray data was described in 1976, but atomic coordinates were not published. The atomic coordinates are determined here by combining the information available from the published single-crystal data with a dispersion-corrected density functional theory (DFT-D) method that has been validated to reproduce molecular crystal structures very accurately. Additional proof for the correctness of the structure comes from comparison with cefaclor dihydrate, C15H14ClN3O4S·2H2O, which is isomorphous and for which more complete single-crystal data are available. H-atom positions have not previously been published for either compound. The DFT-D calculations confirm that both cefradine and cefaclor are present in the zwitterionic form in the two dihydrate structures. A potential ambiguity concerning the orientation of the cyclohexadienyl ring in cefradine dihydrate is also clarified, and on the basis of the calculated energies it is shown that disorder should not be expected at room temperature. The DFT-D methods can be applied to recover full structural data in cases where only partial information is available, and where it may not be possible or desirable to obtain new experimental data.


1973 ◽  
Vol 17 ◽  
pp. 20-31
Author(s):  
Howard F. McMurdie

AbstractThe identification of crystalline phases by x-ray diffraction, either by powder or single crystal techniques requires a dependable body of reference data. It is not only necessary to have data on each phase which are accurate and complete, it also is desirable to have data on as wide a range of compounds as possible, and to have the data organized in such a manner as to be readily usable. The outstanding compilations which approach these goals are the Powder Diffraction File and Crystal Data.The Powder Diffraction File, published by the Joint Committee on Powder Diffraction Standards has data covering about 22,500 phases, both organic and inorganic. These data are of various degrees of accuracy as is indicated by symbols. The File is continuously being improved by the addition of evaluated data from the general literature and by data produced by supporting projects, the principal one being the Joint Committee Associateship at the National Bureau of Standards.To be noted in the File with a star, and to be truly considered standard data a powder pattern must be complete in the sense of including all reflections above the minimum “d” spacing covered, both weak lines and those with large “d” spacings. Since the best test of a pattern is its own internal consistency, the reflections must all have hkl's assigned and must show a good agreement between the spacings observed and those calculated from a refined cell, and they must be consistent with the known space group. This agreement can be best obtained by the use of an internal standard and a computer program. The intensities should be measured by a method which minimizes the effect of crystal orientation.The PDF is provided with search procedure manuals arranged on a scheme of the strongest lines to help in locating data matching that from an unknovm. A computer program for rapid searching is available. A recent development is the inclusion of a “reference intensity” to aid in estimating the quantitative analysis of mixtures.Crystal Data is a compilation now in the third edition made at the National Bureau of Standards and published by the Joint Committee on Powder Diffraction Standards. It contains data on the unit cell parameters of over 24,000 phases. These data are arranged by crystal system and axial ratios to simplify identification of phases from unit cell data obtained from Single crystal cameras.Both of these large compilations are also important reference sources for crystallographic information giving structural information and literature references.


2018 ◽  
Vol 74 (7) ◽  
pp. 1013-1016
Author(s):  
Morten K. Peters ◽  
Christian Näther ◽  
Rainer Herges

The crystal structure of the title compound, C11H10N4, comprises molecules in a trans conformation for which all the atoms are located in general positions. The six-membered rings are coplanar and this arrangement might be stabilized by intramolecular N—H...N hydrogen bonding. In the crystal, the molecules are linked into helical chains parallel to the b axis via N—H...N hydrogen bonding. The molecular packing shows a herringbone-like pattern along the a axis. Comparison of the X-ray powder diffraction with that calculated from single crystal data proves that a pure crystalline phase was obtained and UV–Vis measurements reveal that only the trans isomer is present.


1987 ◽  
Vol 2 (3) ◽  
pp. 187-190 ◽  
Author(s):  
Kjell R. Waerstad ◽  
A. William Frazier

AbstractX-ray powder diffraction and single-crystal data are reported for a series of isomorphous compounds with the general chemical composition (Fe,Al)3(K,NH4,H3O)H14 (PO4)8·4H2O. The compounds are monoclinic with space group C2/c. Unit-cell parameters were determined on the mixed salt (Fe0.84,Al0.16)3KH14(PO4)8·4H2O, as obtained from sludge precipitated in commercial shipping-grade wet-process phosphoric acid. Single-crystal studies and refined powder diffraction data provided unit-cell parameters of a= 16.908(9) Å, b = 9.588(2) Å, c = 17.539(5) Å, and β = 91.06(4)°.


2012 ◽  
Vol 76 (4) ◽  
pp. 883-890 ◽  
Author(s):  
R. Turner ◽  
O. I. Siidra ◽  
M. S. Rumsey ◽  
S. V. Krivovichev ◽  
C. J. Stanley ◽  
...  

AbstractTwo new lead oxychloride minerals, hereroite [Pb32(O, ☐)21](AsO4)2((Si,As,V,Mo)O4)2Cl10 and vladkrivovichevite [Pb32O18][Pb4Mn2O]Cl14(BO3)8·2H2O occur in association with asisite, damaraite, kombatite, sahlinite, copper, quartz, barysilite, Mn silicates and a number of Mn oxyhydroxide minerals on a specimen from the Kombat mine in Namibia. The minerals formed as late-stage products of hydrothermal reworking of primary sulfide minerals.Hereroite is monoclinic, C2/c with a = 23.14(1), b = 22.65(1), c = 12.39(1) Å, β = 102.00(5)°, V = 6351.6(41) Å3 from powder-diffraction data and a = 23.139(4), b = 22.684(4), c = 12.389(2) Å, β = 102.090(3)°, V = 6358.8(18) Å3 from single-crystal data. It is bright orange, with white streak and adamantine lustre. It is brittle with no observed parting or cleavage and has a conchoidal fracture. The calculated density is 8.15 g cm–3. The mean refractive index in air at 589 nm is 2.38. The six strongest reflections in the X-ray powder diffraction pattern [d in Å, (I), (hkl)] are as follows: 2.982(100)(51); 2.795(47)(80); 1.986(24)(8); 1.641(24)(11..); 3.512(23)(61); 3.901(21)(511). Hereroite is named for the Herero people, one of the indigenous tribal groupings in the region where the Kombat mine is located.Vladkrivovichevite is orthorhombic, Pmmn with a = 12.87(5), b = 27.7(4), c = 11.46(3) Å, V = 4080.1(5) Å3, from powder-diffraction data and a = 12.759(1), b = 27.169(4), c = 11.515(1) Å, V = 3992.0(9) Å3, Z = 2, from single-crystal data. It is pale greenish yellow, with white streak and adamantine lustre. It is brittle with no observed parting or cleavage and has a conchoidal fracture. The calculated density is 7.40 g cm–3. The mean refractive indices in air at 589 nm are 2.30 and 2.34. The six strongest reflections in the X-ray powder diffraction pattern [d in Å, (I), (hkl)] are as follows: 2.860(100)(370); 2.733(84)(073); 3.707(49)(073); 3.068(37)(401); 2.075(32)(473); 1.601(32)(3.14.3). Vladkrivovichevite is named in honour of Prof. Dr Vladimir Gerasimovich Krivovichev (b. 24.04.1946), Head of the Department of Mineralogy, Geological Faculty, St Petersburg State University.The crystal structures of hereroite and vladkrivovichevite consist of alternating litharge-like O – Pb double layers and chlorine sheets and both are structurally related to other layered lead oxychlorides. In hereroite, tetrahedral AsO4 and (Si, As, V, Mo)O4 groups locate in defects within the O – Pb block, which combines square 'symesite-type' and double-square 'kombatite-type' cavities in its crystal structure. The structure of vladkrivovichevite is based on O – Pb derivative blocks with the interlayer occupied by Cl– anions and oxocentred OPb4Mn2 octahedra whose eight triangular faces are capped by triangular borate anions, BO33–.


Sign in / Sign up

Export Citation Format

Share Document