A cell-averaging chebyshev spectral method for nonlinear fredholm-hammerstein integral equations

1996 ◽  
Vol 60 (1-2) ◽  
pp. 91-104 ◽  
Author(s):  
Gamal N. Elnagar ◽  
Mohammad A. Kazemi
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hassan A. Zedan ◽  
Seham Sh. Tantawy ◽  
Yara M. Sayed

Chebyshev spectral method based on operational matrix is applied to both systems of fractional integro-differential equations and Abel’s integral equations. Some test problems, for which the exact solution is known, are considered. Numerical results with comparisons are made to confirm the reliability of the method. Chebyshev spectral method may be considered as alternative and efficient technique for finding the approximation of system of fractional integro-differential equations and Abel’s integral equations.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 330
Author(s):  
Gennaro Infante

We discuss the solvability of a fairly general class of systems of perturbed Hammerstein integral equations with functional terms that depend on several parameters. The nonlinearities and the functionals are allowed to depend on the components of the system and their derivatives. The results are applicable to systems of nonlocal second order ordinary differential equations subject to functional boundary conditions, this is illustrated in an example. Our approach is based on the classical fixed point index.


2005 ◽  
Vol 2005 (1) ◽  
pp. 113-121 ◽  
Author(s):  
M. Lakestani ◽  
M. Razzaghi ◽  
M. Dehghan

Compactly supported linear semiorthogonal B-spline wavelets together with their dual wavelets are developed to approximate the solutions of nonlinear Fredholm-Hammerstein integral equations. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method is computationally attractive, and applications are demonstrated through an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document