Sliding mode differentiator/observer for quadcopter velocity estimation through sensor fusion

2018 ◽  
Vol 91 (9) ◽  
pp. 2113-2120 ◽  
Author(s):  
Igor Boiko ◽  
Mohammad Chehadeh
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guangyue Xue ◽  
Xuemei Ren ◽  
Kexin Xing ◽  
Qiang Chen

This paper proposes a novel discrete-time terminal sliding mode controller (DTSMC) coupled with an asynchronous multirate sensor fusion estimator for rigid-link flexible-joint (RLFJ) manipulator tracking control. A camera is employed as external sensors to observe the RLFJ manipulator’s state which cannot be directly obtained from the encoders since gear mechanisms or flexible joints exist. The extended Kalman filter- (EKF-) based asynchronous multirate sensor fusion method deals with the slow sampling rate and the latency of camera by using motor encoders to cover the missing information between two visual samples. In the proposed control scheme, a novel sliding mode surface is presented by taking advantage of both the estimation error and tracking error. It is proved that the proposed controller achieves convergence results for tracking control in the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.


Author(s):  
Vinay Chawda ◽  
Marcia K. O’Malley

In many mechatronic applications, velocity estimation is required for implementation of closed loop control. Proportional-Integral control based differentiation has been proposed to estimate velocity in bilateral teleoperation. We propose a Second Order Sliding Mode (SOSM) based velocity estimation scheme for this application, since the SOSM approach is robust to small disturbances near the origin. Simulation results demonstrate the superior performance of the SOSM based velocity estimation over the PI-control approach for bilateral teleoperation in viscous environments. Additionally, a novel Lyapunov function based approach to stability analysis of the SOSM based differentiator is presented.


2006 ◽  
Vol 128 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Hyeongcheol Lee

Reliability indexed sensor fusion (RISF) is a new estimation techique which uses process and measurement noise covariances as the reliability index in an adaptive Kalman filter framework. In RISF, noise covariances are assumed to be highly uncertain and determined by engineering knowledge. The uniform boundedness of the RISF with incorrect noise covariances is proved in the sense that the error covariance is bounded if specified conditions are satisfied. The RISF technique is then applied to the vehicle longitudinal and lateral velocity estimation. Multiple sensors, such as the whell speed sensors, the accelerometers, the yaw rate sensor, and the steering angle sensor, are used for the velocity estimation. Test results show the accuracy of the vehicle velocity estimation by the proposed RISF technique.


Sign in / Sign up

Export Citation Format

Share Document