Sliding-mode control system for the three-axis attitude control of rigid-body spacecraft with unknown dynamics parameters

1991 ◽  
Vol 54 (4) ◽  
pp. 737-761 ◽  
Author(s):  
S. J. DODDS ◽  
A. B. WALKER
2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chutiphon Pukdeboon

The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC) is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE) and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.


2011 ◽  
Vol 467-469 ◽  
pp. 962-967
Author(s):  
Yu Chen ◽  
Guang Li ◽  
Chao Yang Dong ◽  
Qing Wang

A novel adaptive fuzzy sliding mode predictive control (AFSMPC) method for solving the networked launch vehicle attitude control system with network-induced delay, uncertain parameters and outer disturbances is proposed in this paper for the attitude stabilization of the networked launch vehicle control system. The proposed sliding mode surface includes a predictor to compensate for the network-induced delay of the NCS. Then, for the networked Launch vehicle attitude control system with uncertain parameters and outer disturbances, a total sliding-mode control system is proposed, which is designed without the reaching phase of a conventional sliding-mode control. In order to attenuate the chattering phenomena brought by the proposed control, a fuzzy logic system is designed to mimic the good behavior of a total sliding-mode predictive control system. Finally, Simulation results show that the proposed control scheme is effective.


2011 ◽  
Vol 383-390 ◽  
pp. 7550-7555
Author(s):  
Hui Hui Bian ◽  
Zhong Hua Wang

In this paper, a sliding mode controller is developed based on the modified rodrigues parameters. Modified rodrigues parameters can avoid the singularity in kinematic equations and realize less parameters setting. Finally, the numerical simulation results show that the method is effective.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


Sign in / Sign up

Export Citation Format

Share Document