The Effects of Reinforcement Duration in S2on the Peak Shift

1981 ◽  
Vol 105 (2) ◽  
pp. 321-322
Author(s):  
W. D. Gouvier ◽  
F. R. Akins ◽  
J. E. Lyons
2009 ◽  
Author(s):  
Matthew G. Wisniewski ◽  
Barbara A. Church ◽  
Eduardo Mercado
Keyword(s):  

2008 ◽  
Author(s):  
Matthew G. Wisniewski ◽  
Barbara A. Church ◽  
Eduardo Mercado

2020 ◽  
Vol 26 (31) ◽  
pp. 3828-3833 ◽  
Author(s):  
Tuula Peñate-Medina ◽  
Eike Kraas ◽  
Kunliang Luo ◽  
Jana Humbert ◽  
Hanwen Zhu ◽  
...  

Background: Nanoparticle imaging and tracking the release of the loaded material from the nanoparticle system have attracted significant attention in recent years. If the release of the loaded molecules could be monitored reliably in vivo, it would speed up the development of drug delivery systems remarkably. Methods: Here, we test a system that uses indocyanine green (ICG) as a fluorescent agent for studying release kinetics in vitro and in vivo from the lipid iron nanoparticle delivery system. The ICG spectral properties like its concentration dependence, sensitivity and the fluctuation of the absorption and emission wavelengths can be utilized for gathering information about the change of the ICG surrounding. Results: We have found that the absorption, fluorescence, and photoacoustic spectra of ICG in lipid iron nanoparticles differ from the spectra of ICG in pure water and plasma. We followed the ICG containing liposomal nanoparticle uptake into squamous carcinoma cells (SCC) by fluorescence microscopy and the in vivo uptake into SCC tumors in an orthotopic xenograft nude mouse model under a surgical microscope. Conclusion: Absorption and emission properties of ICG in the different solvent environment, like in plasma and human serum albumin, differ from those in aqueous solution. Photoacoustic spectral imaging confirmed a peak shift towards longer wavelengths and an intensity increase of ICG when bound to the lipids. The SCC cells showed that the ICG containing liposomes bind to the cell surface but are not internalized in the SCC-9 cells after 60 minutes of incubation. We also showed here that ICG containing liposomal nanoparticles can be traced under a surgical camera in vivo in orthotopic SCC xenografts in mice.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yudai Ichikawa ◽  
Junko Yamagata-Sekihara ◽  
Jung Keun Ahn ◽  
Yuya Akazawa ◽  
Kanae Aoki ◽  
...  

Abstract We have measured, for the first time, the inclusive missing-mass spectrum of the $^{12}$C$(K^-, p)$ reaction at an incident kaon momentum of 1.8 GeV/$c$ at the J-PARC K1.8 beamline. We observed a prominent quasi-elastic peak ($K^-p \rightarrow K^-p$) in this spectrum. In the quasi-elastic peak region, the effect of secondary interaction is apparently observed as a peak shift, and the peak exhibits a tail in the bound region. We compared the spectrum with a theoretical calculation based on the Green’s function method by assuming different values of the parameters for the $\bar{K}$–nucleus optical potential. We found that the spectrum shape in the binding-energy region $-300 \, \text{MeV} < B_{K} < 40$ MeV is best reproduced with the potential depths $V_0 = -80$ MeV (real part) and $W_0 = -40$ MeV (imaginary part). On the other hand, we observed a significant event excess in the deeply bound region around $B_{K} \sim 100$ MeV, where the major decay channel of $K^- NN \to \pi\Sigma N$ is energetically closed, and the non-mesonic decay modes ($K^- NN \to \Lambda N$ and $\Sigma N$) should mainly contribute. The enhancement is fitted well by a Breit–Wigner function with a kaon-binding energy of 90 MeV and width 100 MeV. A possible interpretation is a deeply bound state of a $Y^{*}$-nucleus system.


Author(s):  
Hirotaka Takahashi ◽  
Katsuhiro Matsuda ◽  
Yasushi Tomita ◽  
Takashi Oda ◽  
Eri Isozaki

2021 ◽  
Vol 13 (12) ◽  
pp. 6777
Author(s):  
Masanobu Kii ◽  
Yuki Goda ◽  
Varameth Vichiensan ◽  
Hiroyuki Miyazaki ◽  
Rolf Moeckel

Reducing congestion has been one of the critical targets of transportation policies, particularly in cities in developing countries suffering severe and chronic traffic congestions. Several traditional measures have been in place but seem not very successful. This paper applies the agent-based transportation model MATSim for a transportation analysis in Bangkok to assess the impact of spatiotemporal transportation demand management measures. We collect required data for the simulation from various data sources and apply maximum likelihood estimation with the limited data available. We investigate two demand management scenarios, peak time shift, and decentralization. As a result, we found that these spatiotemporal peak shift measures are effective for road transport to alleviate congestion and reduce travel time. However, the effect of those measures on public transport is not uniform but depends on the users’ circumstances. On average, the simulated results indicate that those measures increase the average travel time and distance. These results suggest that demand management policies require considerations of more detailed conditions to improve usability. The study also confirms that microsimulation can be a tool for transport demand management assessment in developing countries.


1967 ◽  
Vol 10 (4) ◽  
pp. 361-366 ◽  
Author(s):  
T. M. Bloomfield
Keyword(s):  

2020 ◽  
Vol 1004 ◽  
pp. 393-400
Author(s):  
Tuerxun Ailihumaer ◽  
Hongyu Peng ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Gilyong Chung ◽  
...  

Synchrotron monochromatic beam X-ray topography (SMBXT) in grazing incidence geometry shows black and white contrast for basal plane dislocations (BPDs) with Burgers vectors of opposite signs as demonstrated using ray tracing simulations. The inhomogeneous distribution of these dislocations is associated with the concave/convex shape of the basal plane. Therefore, the distribution of these two BPD types were examined for several 6-inch diameter 4H-SiC substrates and the net BPD density distribution was used for evaluating the nature and magnitude of basal plane bending in these wafers. Results show different bending behaviors along the two radial directions - [110] and [100] directions, indicating the existence of non-isotropic bending. Linear mapping of the peak shift of the 0008 reflection along the two directions was carried out using HRXRD to correlate with the results from the SMBXT measurements. Basal-plane-tilt angle calculated using the net BPD density derived from SMBXT shows a good correlation with those obtained from HRXRD measurements, which further confirmed that bending in basal plane is caused by the non-uniform distribution of BPDs. Regions of severe bending were found to be associated with both large tilt angles (95% black contrast BPDs to 5% white contrast BPDs) and abrupt changes in a and c lattice parameters i.e. local strain.


Polymer ◽  
2021 ◽  
pp. 123585
Author(s):  
Audrius Doblies ◽  
Christian Feiler ◽  
Tim Würger ◽  
Eduard Schill ◽  
Robert H. Meißner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document