Modelling of stem-scale turbulence and sediment suspension in vegetated flow

Author(s):  
Sha Lou ◽  
Ming Chen ◽  
Gangfeng Ma ◽  
Shuguang Liu ◽  
Guihui Zhong ◽  
...  
AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 456-464 ◽  
Author(s):  
C. K. W. Tam ◽  
N. Pastouchenko
Keyword(s):  

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1261-1269 ◽  
Author(s):  
Christopher K. W. Tam ◽  
Nikolai Pastouchenko ◽  
Laurent Auriault

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zhuo Wang ◽  
Kun Luo ◽  
Junhua Tan ◽  
Dong Li ◽  
Jianren Fan
Keyword(s):  

2019 ◽  
Vol 4 (12) ◽  
Author(s):  
C. Marchioli ◽  
H. Bhatia ◽  
G. Sardina ◽  
L. Brandt ◽  
A. Soldati

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hai Le-The ◽  
Christian Küchler ◽  
Albert van den Berg ◽  
Eberhard Bodenschatz ◽  
Detlef Lohse ◽  
...  

AbstractWe report a robust fabrication method for patterning freestanding Pt nanowires for use as thermal anemometry probes for small-scale turbulence measurements. Using e-beam lithography, high aspect ratio Pt nanowires (~300 nm width, ~70 µm length, ~100 nm thickness) were patterned on the surface of oxidized silicon (Si) wafers. Combining wet etching processes with dry etching processes, these Pt nanowires were successfully released, rendering them freestanding between two silicon dioxide (SiO2) beams supported on Si cantilevers. Moreover, the unique design of the bridge holding the device allowed gentle release of the device without damaging the Pt nanowires. The total fabrication time was minimized by restricting the use of e-beam lithography to the patterning of the Pt nanowires, while standard photolithography was employed for other parts of the devices. We demonstrate that the fabricated sensors are suitable for turbulence measurements when operated in constant-current mode. A robust calibration between the output voltage and the fluid velocity was established over the velocity range from 0.5 to 5 m s−1 in a SF6 atmosphere at a pressure of 2 bar and a temperature of 21 °C. The sensing signal from the nanowires showed negligible drift over a period of several hours. Moreover, we confirmed that the nanowires can withstand high dynamic pressures by testing them in air at room temperature for velocities up to 55 m s−1.


2021 ◽  
Vol 11 (4) ◽  
pp. 1970
Author(s):  
Martin Lasota ◽  
Petr Šidlof ◽  
Manfred Kaltenbacher ◽  
Stefan Schoder

In an aeroacoustic simulation of human voice production, the effect of the sub-grid scale (SGS) model on the acoustic spectrum was investigated. In the first step, incompressible airflow in a 3D model of larynx with vocal folds undergoing prescribed two-degree-of-freedom oscillation was simulated by laminar and Large-Eddy Simulations (LES), using the One-Equation and Wall-Adaptive Local-Eddy (WALE) SGS models. Second, the aeroacoustic sources and the sound propagation in a domain composed of the larynx and vocal tract were computed by the Perturbed Convective Wave Equation (PCWE) for vowels [u:] and [i:]. The results show that the SGS model has a significant impact not only on the flow field, but also on the spectrum of the sound sampled 1 cm downstream of the lips. With the WALE model, which is known to handle the near-wall and high-shear regions more precisely, the simulations predict significantly higher peak volumetric flow rates of air than those of the One-Equation model, only slightly lower than the laminar simulation. The usage of the WALE SGS model also results in higher sound pressure levels of the higher harmonic frequencies.


Sign in / Sign up

Export Citation Format

Share Document