pt nanowires
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 19)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
pp. 2110702
Author(s):  
Jie Liu ◽  
Zhi Liu ◽  
Haozhi Wang ◽  
Bin Liu ◽  
Naiqin Zhao ◽  
...  

Author(s):  
Debadarshini Samantaray ◽  
Meghabarna Gayen ◽  
Ahin Roy ◽  
Pavithra Bellare ◽  
Narayanan Ravishankar

2021 ◽  
Author(s):  
◽  
Benjamin James Wylie-van Eerd

<p>This describes research done on a variety of ferroelectric systems over the course of three years during the Ph.D. programme at Victoria University of Wellington. The majority of the work involved using Raman spectroscopy to investigate the lattice dynamics of the ferroelectric materials studied, and by this method measuring the structural phase diagrams in the ferroelectrics.  Three material systems were investigated. The first was bulk ceramics of the solid solution of Na₀.₅Bi₀.₅TiO₃ and BaTiO₃ (BNT-BT). The second material was PbTiO₃ (PT) nanowires prepared by annealing `PX' phase lead titanate in air. In these samples we found a tensile strain caused by nanoscopic voids in the wires. The third material studied was thin films of SrTiO₃ (STO) grown epitaxially on lattice mismatch substrates. This introduced strain into the system.  In the BNT-BT system, temperature dependent Raman spectra were taken of the various samples. From the spectra, it was discovered that the structural phase transitions of the material did not perfectly correspond to the electrical phase transitions. For one significant phase boundary, no structural change occurs, only a loss of long-range order. The local sensitivity of the Raman spectroscopy technique allowed this to be found. As a consequence of this, no tricritical point is found in the phase diagram of BNT-BT. It was also found that poling the sample in electrical fields shifted the morphotropic phase boundary between 5% and 6% Ba-substitution about 1% towards the high-substitution side, but otherwise did not affect the phase diagram.  In the PT nanowires system, temperature dependent Raman spectroscopy and scanning electron microscopy were performed to measure the spectra of single nanowires. A large enhancement of the ferroelectric phase transition temperature was discovered. The enhancement was found to be dependent on the nanowire diameter, with peak enhancements of over 100K measured in wires close to 125 nm. Wires both larger and smaller than this showed smaller degrees of enhancement. It is proposed that the enhancement is caused by tensile strain developed in the wires during their synthesis, where they were transformed from a low-density phase into a high-density phase.  In the STO thin films system, temperature dependent ultraviolet Raman spectra and x-ray diffraction spectra were measured to establish a relationship between the biaxial strain developed in the films and their phase diagrams. The XRD found strain in the films of similar substrate which was inversely proportional to thickness up to a threshold point. Beyond that point, there is a discontinuity and additional thickness of film is grown without strain. The strain in the lower layer remains constant. The UV Raman spectroscopy method was able to enhance the signal such that thin films with weak signals could be measured. The spectra showed signs of a phase transition in all of the films. In one film enough of the spectral features were visible to characterise the low temperature phase as the orthorhombic ferroelectric phase of STO. The transition temperature varied from sample to sample, and a relationship between the biaxial strain and the transition temperature was seen.</p>


2021 ◽  
Author(s):  
◽  
Benjamin James Wylie-van Eerd

<p>This describes research done on a variety of ferroelectric systems over the course of three years during the Ph.D. programme at Victoria University of Wellington. The majority of the work involved using Raman spectroscopy to investigate the lattice dynamics of the ferroelectric materials studied, and by this method measuring the structural phase diagrams in the ferroelectrics.  Three material systems were investigated. The first was bulk ceramics of the solid solution of Na₀.₅Bi₀.₅TiO₃ and BaTiO₃ (BNT-BT). The second material was PbTiO₃ (PT) nanowires prepared by annealing `PX' phase lead titanate in air. In these samples we found a tensile strain caused by nanoscopic voids in the wires. The third material studied was thin films of SrTiO₃ (STO) grown epitaxially on lattice mismatch substrates. This introduced strain into the system.  In the BNT-BT system, temperature dependent Raman spectra were taken of the various samples. From the spectra, it was discovered that the structural phase transitions of the material did not perfectly correspond to the electrical phase transitions. For one significant phase boundary, no structural change occurs, only a loss of long-range order. The local sensitivity of the Raman spectroscopy technique allowed this to be found. As a consequence of this, no tricritical point is found in the phase diagram of BNT-BT. It was also found that poling the sample in electrical fields shifted the morphotropic phase boundary between 5% and 6% Ba-substitution about 1% towards the high-substitution side, but otherwise did not affect the phase diagram.  In the PT nanowires system, temperature dependent Raman spectroscopy and scanning electron microscopy were performed to measure the spectra of single nanowires. A large enhancement of the ferroelectric phase transition temperature was discovered. The enhancement was found to be dependent on the nanowire diameter, with peak enhancements of over 100K measured in wires close to 125 nm. Wires both larger and smaller than this showed smaller degrees of enhancement. It is proposed that the enhancement is caused by tensile strain developed in the wires during their synthesis, where they were transformed from a low-density phase into a high-density phase.  In the STO thin films system, temperature dependent ultraviolet Raman spectra and x-ray diffraction spectra were measured to establish a relationship between the biaxial strain developed in the films and their phase diagrams. The XRD found strain in the films of similar substrate which was inversely proportional to thickness up to a threshold point. Beyond that point, there is a discontinuity and additional thickness of film is grown without strain. The strain in the lower layer remains constant. The UV Raman spectroscopy method was able to enhance the signal such that thin films with weak signals could be measured. The spectra showed signs of a phase transition in all of the films. In one film enough of the spectral features were visible to characterise the low temperature phase as the orthorhombic ferroelectric phase of STO. The transition temperature varied from sample to sample, and a relationship between the biaxial strain and the transition temperature was seen.</p>


2021 ◽  
pp. 2103762
Author(s):  
Menggang Li ◽  
Zhonglong Zhao ◽  
Weiyu Zhang ◽  
Mingchuan Luo ◽  
Lu Tao ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hai Le-The ◽  
Christian Küchler ◽  
Albert van den Berg ◽  
Eberhard Bodenschatz ◽  
Detlef Lohse ◽  
...  

AbstractWe report a robust fabrication method for patterning freestanding Pt nanowires for use as thermal anemometry probes for small-scale turbulence measurements. Using e-beam lithography, high aspect ratio Pt nanowires (~300 nm width, ~70 µm length, ~100 nm thickness) were patterned on the surface of oxidized silicon (Si) wafers. Combining wet etching processes with dry etching processes, these Pt nanowires were successfully released, rendering them freestanding between two silicon dioxide (SiO2) beams supported on Si cantilevers. Moreover, the unique design of the bridge holding the device allowed gentle release of the device without damaging the Pt nanowires. The total fabrication time was minimized by restricting the use of e-beam lithography to the patterning of the Pt nanowires, while standard photolithography was employed for other parts of the devices. We demonstrate that the fabricated sensors are suitable for turbulence measurements when operated in constant-current mode. A robust calibration between the output voltage and the fluid velocity was established over the velocity range from 0.5 to 5 m s−1 in a SF6 atmosphere at a pressure of 2 bar and a temperature of 21 °C. The sensing signal from the nanowires showed negligible drift over a period of several hours. Moreover, we confirmed that the nanowires can withstand high dynamic pressures by testing them in air at room temperature for velocities up to 55 m s−1.


2021 ◽  
Vol 143 (14) ◽  
pp. 5355-5363
Author(s):  
Geun Ho Gu ◽  
Juhyung Lim ◽  
Chengzhang Wan ◽  
Tao Cheng ◽  
Heting Pu ◽  
...  

2020 ◽  
Vol 261 ◽  
pp. 114669
Author(s):  
Fernando Meneses ◽  
Cristina Bran ◽  
Manuel Vázquez ◽  
Paula G. Bercoff

2020 ◽  
pp. 101761
Author(s):  
Shivam Kansara ◽  
Sanjeev K. Gupta ◽  
Yogesh Sonvane ◽  
P.N. Gajjar

Sign in / Sign up

Export Citation Format

Share Document