Mathematical model of unsteady transport and its experimental verification in a compound open channel flow

1993 ◽  
Vol 31 (2) ◽  
pp. 229-248 ◽  
Author(s):  
Slobodan Djordjevic
1978 ◽  
Vol 86 (4) ◽  
pp. 761-781 ◽  
Author(s):  
J. J. Mcguirk ◽  
W. Rodi

A two-dimensional mathematical model is described for the calculation of the depth-averaged velocity and temperature or concentration distribution in open-channel flows, an essential feature of the model being its ability to handle recirculation zones. The model employs the depth-averaged continuity, momentum and temperature/concentration equations, which are solved by an efficient finite-difference procedure. The ‘rigid lid’ approximation is used to treat the free surface. The turbulent stresses and heat or concentration fluxes are determined from a depth-averaged version of the so-calledk, ε turbulence model which characterizes the local state of turbulence by the turbulence kinetic energykand the rate of its dissipation ε. Differential transport equations are solved forkand ε to determine these two quantities. The bottom shear stress and turbulence production are accounted for by source/sink terms in the relevant equations. The model is applied to the problem of a side discharge into open-channel flow, where a recirculation zone develops downstream of the discharge. Predicted size of the recirculation zone, jet trajectories, dilution, and isotherms are compared with experiments for a wide range of discharge to channel velocity ratios; the agreement is generally good. An assessment of the numerical accuracy shows that the predictions are not influenced significantly by numerical diffusion.


1994 ◽  
Vol 30 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Shiyu Li ◽  
Guang Hao Chen

A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.


2019 ◽  
Vol 57 (2) ◽  
pp. 280-282
Author(s):  
Shangtuo Qian ◽  
Hui Xu ◽  
Jiangang Feng

Sign in / Sign up

Export Citation Format

Share Document