Dependence of the free volume fraction at the glass transition temperature on the molecular parameters of linear polymers

1973 ◽  
Vol 7 (3) ◽  
pp. 431-444 ◽  
Author(s):  
Y. U.S. Lipatov ◽  
V. P. Privalko
2018 ◽  
Vol 149 ◽  
pp. 01080 ◽  
Author(s):  
F. Elhaouzi ◽  
A. Mdarhri ◽  
M. Zaghrioui ◽  
C. Honstettre ◽  
I. El Aboudi ◽  
...  

The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA) polymer filled with three concentrations of the dispersed conducting carbon black (CB) nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix Tg=-75°C. For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity ɛ=ɛ' -iɛ'' with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity ɛ'' exhibits a slight decreasewith temperature, the real part ɛ' shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.


1997 ◽  
Vol 504 ◽  
Author(s):  
S. X. Wang ◽  
L. M. Wang ◽  
R. C. Ewing

ABSTRACTA model based on cascade melting and recrystallization is derived to describe ion irradiation-induced amorphization. The accumulation of amorphous volume fraction during irradiation is represented in a single equation. Depending on the extent of recrystallization of a subcascade, the amorphous volume accumulation can be described by a set of curves that change from exponential to sigmoidal functions. The parameters (including temperature, cascade size, crystallization rate, glass transition temperature, dose rate) that affect the extent of recrystallization are included in the model. The model also describes the temperature dependence of critical dose for amorphization.


2021 ◽  
Vol 15 (1) ◽  
pp. 7894-7906
Author(s):  
Mohit Mittal ◽  
Rajiv Chaudhary

To design and develop a hybrid biocomposite material for structural applications, it becomes necessary to determine the optimum fibers layering pattern. Therefore, in this research work, the different layered hybrid biocomposite boards i.e. bilayer pineapple/coir (P/C), trilayer (PCP, CPC), and intimately mixed (IM) were developed and characterized for viscoelastic properties. The composites were made by hand lay-up method, keeping the volume ratio of PALF and COIR 1:1 and the total fiber volume fraction is 0.40 volume of composite. Dynamic mechanical thermal analysis test was employed to characterize the viscoelastic behavior in terms of storage modulus, loss modulus, loss damping factor, and the glass transition temperature. Amongst all the different layered hybrid composites, the trilayer CPC has lowest value (0.635) of effectiveness coefficient with highest stiffness and activation energy (40.54 kJ/mole). It confirms the better fiber-matrix interaction at the interfacial region. The glass transition temperature of CF-EP and PF-EP was increased by 8.74% and 13.15% respectively by the synergistic hybridization of cellulosic fibers. The PCP layered composite possesses lowest value of phase transition energy (9.17 kJ/mole) and this was because of the poor fiber-matrix interfacial adhesion.


Author(s):  
Brent L. Volk ◽  
Dimitris C. Lagoudas ◽  
Duncan J. Maitland

In this work, tensile tests are performed on a polyurethane shape memory polymer for both free recovery (extension recovery at zero load) and constrained recovery (stress recovery at constant extension) conditions. The experimental characterization is conducted on an electromechanical screw driven test frame, and a laser extensometer is used in conjunction with the electromechanical frame to provide a non-contact technique for measuring the deformation of the material. The specimens are deformed, above the glass transition temperature, to 10% extension. The SMP is then cooled, at a constant value of extension, to below the glass transition temperature to ‘lock’ the temporary shape. The extension recovery at zero load as well as the stress recovery at a constant value of extension is measured during the first shape memory cycle as the SMP is heated to above its glass transition temperature. The material is observed to recover 93% of the applied deformation when heated at zero load. In addition, a stress recovery of 1.5 MPa is observed when heated while holding a constant value of deformation (10% extension). After performing the experiments, the Chen and Lagoudas model, implemented in 1-D by Volk, et al., is used to simulate and predict the experimental results. The material properties used in the model — namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction — are calibrated from a single free recovery experiment. The calibrated model is then used to simulate the material response for the free recovery tests as well as predict the response for the constrained recovery condition. The model simulations agree well with the free recovery experimental data but predict a larger compressive stress than what is observed during the constrained recovery experiment.


Sign in / Sign up

Export Citation Format

Share Document