hybrid biocomposite
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Imane Aadnan ◽  
Omar Zegaoui ◽  
Abderrahim El Mragui ◽  
Joaquim Carlos Gomes Esteves da Silva

In this investigation, a hybrid-biocomposite “ZnO-Bentonite/Chitosan” was synthesized using inexpensive and environmentally friendly materials (Bentonitechitosan) and (ZnO). It was used as a photocatalyst for water remediation. The structural, optical, thermal, and morphological properties of the synthesized hybrid-biocomposite were investigated using XRD, FTIR spectroscopy, UV-vis diffuse reflectance spectroscopy, TGA, XPS, and SEM-EDS. The thermal measurements showed that the decomposition of CS was postponed progressively by adding PB and ZnO, and the thermal stability of the synthesized hybrid-biocomposite was improved. The characterization results highlighted strong interactions between the C–O, C=O, -NH2, and OH groups of chitosan and the alumina-silica sheets of bentonite on the one side, and between the functional groups of chitosan (-NH2, OH) and ZnO on the other side. The photocatalytic efficiency of the prepared hybrid-biocomposite was assessed in the presence of Methyl Orange (MO). The experiments carried out in the dark showed that the MO removal increased in the presence of Zn-PB/CS hybrid-biocomposite (86.1%) by comparison with PB (75.8%) and CS (65.4%) materials. The photocatalytic experiments carried out under visible light showed that the MO removal increased 268 times in the presence of Zn-PB/CS by comparison withZnO.The holes trapping experiments indicated that they are the main oxidative active species involved in the MO degradation under both UV-A and visible light irradiations.


2021 ◽  
Vol 14 ◽  
Author(s):  
Allel Mokaddem ◽  
Bendouma Doumi ◽  
Mohammed Belkheir ◽  
Ahmed Boutaous ◽  
Elhouari Temimi

Background: The objective of sustainable development in the field of materials necessitates and demands the substitution of the basic constituents of a composite material (carbon, glass, etc.) by natural reinforcements, which have a very important role in the protection of the environment and to subsequently have new materials with good properties compared to so-called traditional materials. Objective: In this context, we have investigated, using genetic modeling based on probabilistic models, the effect of thermal stress on transversal damage of a bio-composite hybrid Flax-Hemp/PE material. Method: Our model genetic is based on probabilistic models of Weibull and the different values of the thermal stress was calculated by the Lebrun equation. We used the nonlinear parameter β in the Hoock law of the nonlinear acoustic technique to trace the curves of the damage under the mechanical and thermal stress to validate our theoretical calculations. Results: The results obtained with a genetic simulation are in good agreement with the results found by Clément GOURIER and Raphaël KUENY, who have shown that flax and hemp fibers (bark/Liberian fibers) are good reinforcements of the Polyethylene matrix, we found also found that our hybrid biocomposite material Flax-Hemp/PE is resistant in particular, a part of this material is of plant origin and gives us environmental benefit. Conclusion: It should be noted that the results obtained by the genetic simulation are in good agreement with the results obtained by the nonlinear acoustic technique mentioned by the green curve in all the figures. In perspective, it would be interesting to see, later, the effect of humidity on the damage of the matrix fiber interface of a hybrid biocomposite.


Author(s):  
Mohsen Bahrami ◽  
Belen Enciso ◽  
Carlo Maria Gaifami ◽  
Juana Abenojar ◽  
Miguel Angel Martinez

Carbon Trends ◽  
2021 ◽  
pp. 100059
Author(s):  
Shohei Nishimura ◽  
Neel Narayan ◽  
Onur Sahin ◽  
Ashleigh D. Smith McWilliams ◽  
A. Miller Kristen ◽  
...  

Author(s):  
Jun Kit Wang ◽  
Çiğdem Çimenoğlu ◽  
Nicole Mein Ji Cheam ◽  
Xiao Hu ◽  
Chor Yong Tay

2021 ◽  
Vol 15 (1) ◽  
pp. 7894-7906
Author(s):  
Mohit Mittal ◽  
Rajiv Chaudhary

To design and develop a hybrid biocomposite material for structural applications, it becomes necessary to determine the optimum fibers layering pattern. Therefore, in this research work, the different layered hybrid biocomposite boards i.e. bilayer pineapple/coir (P/C), trilayer (PCP, CPC), and intimately mixed (IM) were developed and characterized for viscoelastic properties. The composites were made by hand lay-up method, keeping the volume ratio of PALF and COIR 1:1 and the total fiber volume fraction is 0.40 volume of composite. Dynamic mechanical thermal analysis test was employed to characterize the viscoelastic behavior in terms of storage modulus, loss modulus, loss damping factor, and the glass transition temperature. Amongst all the different layered hybrid composites, the trilayer CPC has lowest value (0.635) of effectiveness coefficient with highest stiffness and activation energy (40.54 kJ/mole). It confirms the better fiber-matrix interaction at the interfacial region. The glass transition temperature of CF-EP and PF-EP was increased by 8.74% and 13.15% respectively by the synergistic hybridization of cellulosic fibers. The PCP layered composite possesses lowest value of phase transition energy (9.17 kJ/mole) and this was because of the poor fiber-matrix interfacial adhesion.


2020 ◽  
Vol 152 ◽  
pp. 380-392 ◽  
Author(s):  
Hamza Shehzad ◽  
Zahoor H. Farooqi ◽  
Ejaz Ahmed ◽  
Ahsan Sharif ◽  
Muhammad Imran Din ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document