scholarly journals Variations in Linear and Nonlinear Postural Measurements under Achilles Tendon Vibration and Unstable Support-Surface Conditions

2009 ◽  
Vol 42 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Matthew J. E. Turnock ◽  
Charles S. Layne
2017 ◽  
Vol 52 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Anat Vilnai Lubetzky ◽  
Sarah Westcott McCoy ◽  
Robert Price ◽  
Deborah Kartin

Context: Proprioceptive training on compliant surfaces is used to rehabilitate and prevent ankle sprains. The ability to improve proprioceptive function via such training has been questioned. Achilles tendon vibration is used in motor-control research as a form of proprioceptive stimulus. Using measures of postural steadiness with nonlinear measures to elucidate control mechanisms, tendon vibration can be applied to investigate the underlying rationale of proprioceptive training. Objective: To test whether the effect of vibration on young adults' postural control depended on the support surface. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty healthy adults and 10 adults with chronic ankle instability (CAI; age range = 18−40 years). Intervention(s): With eyes open, participants stood in bilateral stance on a rigid plate (floor), memory foam, and a Both Sides Up (BOSU) ball covering a force platform. We applied bilateral Achilles tendon vibration for the middle 20 seconds in a series of 60-second trials and analyzed participants' responses from previbration to vibration (pre-vib) and from vibration to postvibration (vib-post). Main Outcome Measure(s): We calculated anterior-posterior excursion of the center of pressure and complexity index derived from the area under multiscale entropy curves. Results: The excursion response to vibration differed by surface, as indicated by a significant interaction of P < .001 for the healthy group at both time points and for the CAI group vib-post. Although both groups demonstrated increased excursion from pre-vib and from vib-post, a decrease was observed on the BOSU. The complexity response to vibration differed by surface for the healthy group (pre-vib, P < .001). The pattern for the CAI group was similar but not significant. Complexity changes vib-post were the same on all surfaces for both groups. Conclusions: Participants reacted less to ankle vibration when standing on the BOSU as compared with the floor, suggesting that proprioceptive training may not be occurring. Different balance-training paradigms to target proprioception, including tendon vibration, should be explored.


2013 ◽  
Vol 32 (1) ◽  
pp. 214-227 ◽  
Author(s):  
Marius Dettmer ◽  
Amir Pourmoghaddam ◽  
Daniel P. O’Connor ◽  
Charles S. Layne

2010 ◽  
Vol 103 (3) ◽  
pp. 1673-1684 ◽  
Author(s):  
Nadia Dominici ◽  
Yuri P. Ivanenko ◽  
Germana Cappellini ◽  
Maria Luisa Zampagni ◽  
Francesco Lacquaniti

In adults, locomotor movements are accommodated to various support surface conditions by means of specific anticipatory locomotor adjustments and changes in the intersegmental coordination. Here we studied the kinematic strategies of toddlers at the onset of independent walking when negotiating various support surface conditions: stepping over an obstacle, walking on an inclined surface, and on a staircase. Generally, toddlers could perform these tasks only when supported by the arm. They exhibited strategies very different from those of the adults. Although adults maintained walking speed roughly constant, toddlers markedly accelerated when walking downhill or downstairs and decelerated when walking uphill or upstairs. Their coordination pattern of thigh–shank–foot elevation angles exhibited greater inter-trial variability than that in adults, but it did not undergo the systematic change as a function of task that was present in adults. Thus the intersegmental covariance plane rotated across tasks in adults, whereas its orientation remained roughly constant in toddlers. In contrast with the adults, the toddlers often tended to place the foot onto the obstacle or across the edges of the stairs. We interpret such foot placements as part of a haptic exploratory repertoire and we argue that the maintenance of a roughly constant planar covariance—irrespective of the surface inclination and height—may be functional to the exploratory behavior. The latter notion is consistent with the hypothesis proposed decades ago by Bernstein that, when humans start to learn a skill, they may restrict the number of degrees of freedom to reduce the size of the search space and simplify the coordination.


2020 ◽  
Vol 36 (4) ◽  
pp. 228-234
Author(s):  
Ziva M. Rosker ◽  
Jernej Rosker ◽  
Nejc Sarabon

Reports on body sway control following microdiscectomy lack reports on side-specific balance deficits as well as the effects of trunk balance control deficits on body sway during upright stances. About 3 weeks post microdiscectomy, the body sway of 27 patients and 25 controls was measured while standing in an upright quiet stance with feet positioned parallel on an unstable support surface, a tandem stance with the involved leg positioned in front or at the back, a single-leg stance with both legs, and sitting on an unstable surface. Velocity, average amplitude, and frequency-direction–specific parameters were analyzed from the center of pressure movement, measured by the force plate. Statistically significant differences between the 2 groups were observed for the medial–lateral body sway frequency in parallel stance on a stable and unstable support surface and for the sitting balance task in medial-lateral body sway parameters. Medium to high correlations were observed between body sway during sitting and the parallel stance, as well as between the tandem and single-legged stances. Following microdiscectomy, deficits in postural balance were side specific, as expected by the nature of the pathology. In addition, the results of this study confirmed the connection between proximal balance control deficits and balance during upright quiet balance tasks.


2020 ◽  
Vol 736 ◽  
pp. 135290
Author(s):  
Gregg Eschelmuller ◽  
Robyn L. Mildren ◽  
Jean-Sébastien Blouin ◽  
Mark G. Carpenter ◽  
J. Timothy Inglis

Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 259-263
Author(s):  
Tae-sung In ◽  
Jin-Hwa Jung ◽  
Sang-hun Jang ◽  
Kyung-hun Kim ◽  
Kyoung-sim Jung ◽  
...  

AbstractLight touch is the combination of cutaneous and kinesthetic inputs. The literature suggests that light touch compensates for a reduced amount of center of pressure information in older peoples, blind subjects and patients with neurological disorder. This study investigated the effects of light touch applied to an external bar, on the postural sway in individuals with hemiparetic stroke. We used a cross sectional study, fifteen individuals with stroke and 15 healthy age-matched adults stood as still as possible on a force plate. Experimental trials (duration, 30 s) included two visual conditions (open eyes and closed eyes), two somatosensory conditions (no touch and light touch) and two support surface conditions (firm and foam surfaces). The area of center of pressure (COP) and the mean velocity of COP in the medio-lateral and anterior-posterior directions were assessed. For both groups, COP velocity and area decreased with light touch regardless of the visual or surface conditions. The effects of light touch were similar in both groups. In addition, results show that the effectiveness of light touch in reducing postural sway was greater on a foam surface than on a firm surface. Our findings indicate that light touch could be beneficial in postural control for individuals with hemi-paretic stroke


2014 ◽  
Vol 40 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Sandra M. McKay ◽  
Jianhua Wu ◽  
Rosa M. Angulo-Barroso

2009 ◽  
Vol 467 (3) ◽  
pp. 220-224 ◽  
Author(s):  
Diana Abrahámová ◽  
Martina Mancini ◽  
František Hlavačka ◽  
Lorenzo Chiari

Sign in / Sign up

Export Citation Format

Share Document