scholarly journals Breaking the Reflectional Symmetry of Interlimb Coordination Dynamics

1998 ◽  
Vol 30 (3) ◽  
pp. 199-216 ◽  
Author(s):  
Polemnia G. Amazeen ◽  
Eric L. Amazeen ◽  
M. T. Turvey
2021 ◽  
pp. 102986492098831
Author(s):  
Andrea Schiavio ◽  
Pieter-Jan Maes ◽  
Dylan van der Schyff

In this paper we argue that our comprehension of musical participation—the complex network of interactive dynamics involved in collaborative musical experience—can benefit from an analysis inspired by the existing frameworks of dynamical systems theory and coordination dynamics. These approaches can offer novel theoretical tools to help music researchers describe a number of central aspects of joint musical experience in greater detail, such as prediction, adaptivity, social cohesion, reciprocity, and reward. While most musicians involved in collective forms of musicking already have some familiarity with these terms and their associated experiences, we currently lack an analytical vocabulary to approach them in a more targeted way. To fill this gap, we adopt insights from these frameworks to suggest that musical participation may be advantageously characterized as an open, non-equilibrium, dynamical system. In particular, we suggest that research informed by dynamical systems theory might stimulate new interdisciplinary scholarship at the crossroads of musicology, psychology, philosophy, and cognitive (neuro)science, pointing toward new understandings of the core features of musical participation.


2012 ◽  
Vol 107 (11) ◽  
pp. 3050-3061 ◽  
Author(s):  
Susan K. Patrick ◽  
J. Adam Noah ◽  
Jaynie F. Yang

Human infants can crawl using several very different styles; this diversity appears at first glance to contradict our previous findings from hands-and-knees crawling, which suggested that there were strict limitations on coordination, imposed either mechanically or by the developing nervous system. To determine whether coordination was similarly restricted across crawling styles, we studied free crawling overground in 22 infants who used a number of different locomotor strategies. Despite the wide variety in the use of individual limbs and even the number of limbs used, the duration of the stance phase increased with duration of cycle, whereas the duration of the swing phase remained more constant. Additionally, all infants showed organized, rhythmic interlimb coordination. Alternating patterns (e.g., trotlike) predominated (86% of infants). Alternatively, yet much less frequently, all limbs used could work in synchrony (14% of infants). Pacelike patterns were never observed, even in infants that crawled with the belly remaining in contact with the ground so that stability was not a factor. To explore the robustness of the interlimb coordination, a perturbation that prolonged swing of the leg was imposed on 14 additional infants crawling on hands and knees overground or on the treadmill. The perturbation led to a resetting of the crawling pattern, but never to a change in the coordination of the limbs. The findings concur with those regarding other infant animals, together suggesting that the nervous system itself limits the coordination patterns available at a young age.


Author(s):  
Grace K. Kellaher ◽  
Sidney T. Baudendistel ◽  
Ryan T. Roemmich ◽  
Matthew J. Terza ◽  
Chris J. Hass

2021 ◽  
Author(s):  
Mattia Rosso ◽  
Pieter-Jan Maes ◽  
Marc Leman

Abstract Rhythmic joint coordination is ubiquitous in daily-life human activities. In order to coordinate their actions towards shared goals, individuals need to co-regulate their timing and move together at the collective level of behavior. Remarkably, basic forms of coordinated behavior tend to emerge spontaneously as long as two individuals are exposed to each other’s rhythmic movements. The present study investigated the dynamics of spontaneous dyadic entrainment, and more specifically how they depend on the sensory modalities mediating informational coupling. By means of a novel interactive paradigm, we showed that dyadic entrainment systematically takes place during a minimalistic rhythmic task despite explicit instructions to ignore the partner. Crucially, the interaction was organized by clear dynamics in a modality-dependent fashion. Our results showed highly consistent coordination patterns in visually-mediated entrainment, whereas we observed more chaotic and more variable profiles in the auditorily-mediated counterpart. The proposed experimental paradigm yields empirical evidence for the overwhelming tendency of dyads to behave as coupled rhythmic units. In the context of our experimental design, it showed that coordination dynamics differ according to availability and nature of perceptual information. Interventions aimed at rehabilitating, teaching or training sensorimotor functions can be ultimately informed and optimized by such fundamental knowledge.


ChemInform ◽  
2010 ◽  
Vol 41 (6) ◽  
Author(s):  
Wolfgang Maret ◽  
Yuan Li

NeuroImage ◽  
2010 ◽  
Vol 49 (3) ◽  
pp. 2570-2580 ◽  
Author(s):  
S.P. Swinnen ◽  
S. Vangheluwe ◽  
J. Wagemans ◽  
J.P. Coxon ◽  
D.J. Goble ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document