Accident analysis on supercritical water-cooled reactor during design basis and beyond design-basis condition

2015 ◽  
Vol 53 (8) ◽  
pp. 1120-1133
Author(s):  
Zhen Cao ◽  
Xiaojing Liu ◽  
Xu Cheng
2019 ◽  
Vol 63 (2) ◽  
pp. 328-332 ◽  
Author(s):  
Ákos Horváth ◽  
Attila R. Imre ◽  
György Jákli

The Supercritical Water Cooled Reactor (SCWR) is one of the Generation IV reactor types, which has improved safety and economics, compared to the present fleet of pressurized water reactors. For nuclear applications, most of the traditional materials used for power plants are not applicable, therefore new types of materials have to be developed. For this purpose corrosion tests were designed and performed in a supercritical pressure autoclave in order to get data for the design of an in-pile high temperature and high-pressure corrosion loop. Here, we are presenting some results, related to corrosion resistance of some potential structural and fuel cladding materials.


2015 ◽  
Vol 98-99 ◽  
pp. 2235-2238 ◽  
Author(s):  
Massimo Zucchetti ◽  
Bruno Coppi ◽  
Maria Teresa Porfiri ◽  
Marco Riva

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Wang Lianjie ◽  
Lu Di ◽  
Zhao Wenbo

Transient performance of China supercritical water-cooled reactor (SCWR) with the rated electric power of 1000 MWel (CSR1000) core during some typical transients, such as control rod (CR) ejection and uncontrolled CR withdrawal, is analyzed and evaluated with the coupled three-dimensional neutronics and thermal-hydraulics SCWR transient analysis code. The 3D transient analysis shows that the maximum cladding surface temperature (MCST) retains lower than safety criteria 1260 °C during the process of CR ejection accident, and the MCST retains lower than safety criteria 850 °C during the process of uncontrolled CR withdrawal transient. The safety of CSR1000 core can be ensured during the typical transients under the salient fuel temperature and water density reactivity feedback and the essential reactor protection system.


2018 ◽  
Vol 913 ◽  
pp. 237-246 ◽  
Author(s):  
Yan Xia Yu ◽  
Li Ping Guo ◽  
Zheng Yu Shen ◽  
Yun Xiang Long ◽  
Zhong Cheng Zheng ◽  
...  

The average size and density evolution of dislocation loops in AL-6XN austenitic stainless steel, a candidate fuel cladding material for supercritical water-cooled reactor, under proton irradiation were simulated through a rate theory model. The simulation results exhibit relatively good agreement with the experimental results at 563 K. The size and density of defect clusters are calculated under irradiation temperature between 550 K and 900 K and irradiation doses up to 15 dpa which satisfies the working condition in supercritical water-cooled reactor. The fast nucleation between self-interstitials happens at the initial stage of irradiation. The average size of dislocation loops increases while the average density of these loops reduces with the increasing temperature, and the average density approaches to a constant when irradiated at higher irradiation doses. The mechanism is discussed based on the variation of rate constants of defect reactions and the variation of the diffusion coefficients of interstitials and dislocation loops with dose and temperature.


2012 ◽  
Vol 49 ◽  
pp. 70-80 ◽  
Author(s):  
Xiaoyan Tian ◽  
Wenxi Tian ◽  
Dahuan Zhu ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
...  

2011 ◽  
Vol 241 (9) ◽  
pp. 3505-3513 ◽  
Author(s):  
T. Schulenberg ◽  
J. Starflinger ◽  
P. Marsault ◽  
D. Bittermann ◽  
C. Maráczy ◽  
...  

Author(s):  
David L. Y. Louie ◽  
Larry L. Humphries

A sodium coolant accident analysis code is necessary to provide regulators with a means of performing confirmatory analyses for future sodium reactor licensing submissions. MELCOR and CONTAIN, which have been employed by the U.S. Nuclear Regulatory Commission for light water reactor licensing, have been traditionally used for Level 2 and Level 3 probabilistic analyses as well as containment design basis accident analysis. To meet future regulatory needs, new models are being added to the MELCOR code for simulation of sodium reactor designs by integrating the existing models developed for separate effects codes into the MELCOR architecture. Sodium properties and equations of state, such as from the SAS4A code, have previously been implemented into MELCOR to replace the water properties and equation of state. Additional specific sodium-related models to address design basis accidents are now being implemented into MELCOR from CONTAIN-LMR. Although the codes are very different in the code architecture, the feasibility fit is being investigated, and the models for the sodium spray fire and the sodium pool fire have been integrated into MELCOR. A new package called Sodium Chemistry (NAC) has been added to MELCOR to handle all sodium related chemistry models for sodium reactor safety applications. Although MELCOR code requires the ambient condition to be above the freezing point of the coolant (e.g., sodium or water), the high relative freezing point of sodium requires MELCOR to handle situations, particularly far from the primary circuit, where the ambient temperatures are usually at room temperature. Because only a single coolant can be modeled in a problem at a time, any presence of water in the problem would be treated as a trace material, an aerosol, in MELCOR. This paper addresses and describe the integration of the sodium models from CONTAIN-LMR, and the testing of the sodium chemistry models in the NAC package of MELCOR that handles sodium type reactor accidents, using available sodium experiments on spray fire and pool fire. In addition, we describe the anticipated sodium models to be completed in this year, such as the atmospheric chemistry model and sodium-concrete interaction model. Code-to-code comparison between MELCOR and CONTAIN-LMR results, in addition to the experiment code validations, will be demonstrated in this year.


Sign in / Sign up

Export Citation Format

Share Document