Three-dimensional critical wetting and the statistical mechanics of fluids with short-range forces

1987 ◽  
Vol 62 (4) ◽  
pp. 829-842 ◽  
Author(s):  
J.R. Henderson
1989 ◽  
Vol 41 (1) ◽  
pp. 183-198 ◽  
Author(s):  
George Mather

It has been known for over 30 years that motion information alone is sufficient to yield a vivid impression of three-dimensional object structure. For example, a computer simulation of a transparent sphere, the surface of which is randomly speckled with dots, gives no impression of depth when presented as a stationary pattern on a visual display. As soon as the sphere is made to rotate in a series of discrete steps or frames, its 3-D structure becomes apparent. Three experiments are described which use this stimulus, and find that depth perception in these conditions depends crucially on the spatial and temporal properties of the display: 1. Depth is seen reliably only for between-frame rotations of less than 15°, using two-frame and four-frame sequences. 2. Parametric observations using a wide range of frame durations and inter-frame intervals reveal that depth is seen only for inter-frame intervals below 80 msec and is optimal when the stimulus can be sampled at intervals of about 40–60 msec. 3. Monoptic presentation of two frames of the stimulus is sufficient to yield depth, but the impression is destroyed by dichoptic presentation. These data are in close agreement with the observed limits of direction perception in experiments using “short-range” stimuli. It is concluded that depth perception in the motion display used in these experiments depends on the outputs of low-level or “short-range” motion detectors.


VLSI Design ◽  
2001 ◽  
Vol 13 (1-4) ◽  
pp. 75-78 ◽  
Author(s):  
W. J. Gross ◽  
D. Vasileska ◽  
D. K. Ferry

We discuss a full three-dimensional model of an ultra-small MOSFET, in which the transport is treated by a coupled EMC and molecular dynamics (MD) procedure to treat the Coulomb interaction in real space. The inclusion of the proper Coulomb interaction affects both the energy and momentum relaxation processes, but also has a dramatic effect on the characteristic curves of the device. We find that the short-range e–e and e–i terms, combined with discrete impurity effects, is also needed for accurate measurement of the device threshold voltage.


Sign in / Sign up

Export Citation Format

Share Document