scholarly journals Heat Transport and Power Conversion of the Kilopower Reactor Test

2020 ◽  
Vol 206 (sup1) ◽  
pp. 31-42 ◽  
Author(s):  
Marc A. Gibson ◽  
David I. Poston ◽  
Patrick R. McClure ◽  
James L. Sanzi ◽  
Thomas J. Godfroy ◽  
...  
2018 ◽  
Vol 136 ◽  
pp. 1557-1566 ◽  
Author(s):  
L. Barucca ◽  
S. Ciattaglia ◽  
M. Chantant ◽  
A. Del Nevo ◽  
W. Hering ◽  
...  

1985 ◽  
Vol 8 (1P2B) ◽  
pp. 1832-1837 ◽  
Author(s):  
I. Maya ◽  
R.F. Bourque ◽  
R.L. Creedon ◽  
K.R. Schultz

Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Glenn Harvel ◽  
Brian Ikeda

One of the current engineering challenges is to design next generation (Generation IV) Nuclear Power Plants (NPPs) with significantly higher thermal efficiencies (43–55%) compared to those of current NPPs to match or at least to be close to the thermal efficiencies reached at fossil-fired power plants (55–62%). The Sodium-cooled Fast Reactor (SFR) is one of the six concepts considered under the Generation IV International Forum (GIF) initiative. The BN-600 reactor is a sodium-cooled fast-breeder reactor built at the Beloyarsk NPP in Russia. This concept is the only one from the Generation IV nuclear-power reactors, which is actually in operation (since 1980’s). At the secondary side, it uses a subcritical-pressure Rankine-steam cycle with heat regeneration. The reactor generates electrical power in the amount of 600 MWel. The reactor core dimensions are 0.75 m (height) by 2.06 m (diameter). The UO2 fuel enriched to 17–26% is utilized in the core. There are 2 loops (circuits) for sodium flow. For safety reasons, sodium is used both in the primary and the intermediate circuits. Therefore, a sodium-to-sodium heat exchanger is used to transfer heat from the primary loop to the intermediate one. In this work major parameters of the reactor are listed. The actual scheme of the power-conversion heat-transport system is presented; and the results of the calculation of thermal efficiency of this scheme are analyzed. Details of the heat-transport system, including parameters of the sodium-to-sodium heat exchanger and main coolant pump, are presented. In this paper two possibilities for the SFR in terms of the power-conversion cycle are investigated: 1. a subcritical-pressure Rankine-steam cycle through a heat exchanger (current approach in Russian and Japanese power reactors); 2. a supercritical-pressure CO2 Brayton gas-turbine cycle through a heat exchanger (US approach). With the advent of modern super-alloys, the Rankine-steam cycle has progressed into the supercritical region of the coolant and is generating thermal efficiencies into the mid 50% range. Therefore, the thermal efficiency of a supercritical Rankine-steam cycle is also briefly discussed in this paper. According to GIF, the Brayton gas-turbine cycle is under consideration for future nuclear power reactors. The supercritical-CO2 cycle is a new approach in the Brayton gas-turbine cycle. Therefore, dependence of the thermal efficiency of this SC CO2 cycle on inlet parameters of the gas turbine is also investigated.


Author(s):  
Chang H. Oh ◽  
Eung Soo Kim ◽  
Steven Sherman

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility dedicated to hydrogen production, early designs are expected to be dual purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor with electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. A number of configurations of the power conversion unit were demonstrated in this study. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component sizes were estimated for the different working fluids. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Mechanical analyses were performed to determine hoop stresses and thermal expansion characteristics for the different configurations.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2020 ◽  
Vol 8 (43) ◽  
pp. 15135-15141
Author(s):  
Jing Yan ◽  
Yuan-Qiu-Qiang Yi ◽  
Jianqi Zhang ◽  
Huanran Feng ◽  
Yanfeng Ma ◽  
...  

Two non-fullerene small molecule acceptors, NT-4F and NT-4Cl, were designed and synthesized. Power conversion efficiencies of 11.44% and 14.55% were achieved for NT-4Cl-based binary and ternary devices, respectively.


2002 ◽  
Vol 12 (3) ◽  
pp. 201-206 ◽  
Author(s):  
Janina Marciak-Kozłowska ◽  
Mirosław Kozłowski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document