Moment Matching: A New Optimization-Based Sampling Scheme for Uncertainty Quantification of Reactor-Physics Analysis

Author(s):  
Bingbing Ji ◽  
Zhiping Chen ◽  
Jia Liu ◽  
Liangzhi Cao ◽  
Zhuojie Sui ◽  
...  
2021 ◽  
Vol 247 ◽  
pp. 15015
Author(s):  
Paul N Smith ◽  
Dave Hanlon ◽  
Geoff Dobson ◽  
Richard Hiles ◽  
Tim Fry ◽  
...  

ANSWERS® is developing a set of uncertainty quantification (UQ) tools for use with its major physics codes: WIMS/PANTHER (reactor physics), MONK (criticality and reactor physics) and MCBEND (shielding and dosimetry). The Visual Workshop integrated development environment allows the user to construct and edit code inputs, launch calculations, post-process results and produce graphs, and recently uncertainty quantification and optimisation tools have been added. Prior uncertainties due to uncertainties in nuclear data or manufacturing tolerances can be estimated using the sampling method or using the sensitivity options in the physics codes combined with appropriate covariance matrices. To aid the user in the choice of appropriate validation experiments, the MONK categorisation scheme and/or a similarity index can be used. An interactive viewer has been developed which allows the user to search through, and browse details of, over 2,000 MONK validation experiments that have been analysed from the ICSBEP and IRPhE validation sets. A Bayesian updating approach is used to assimilate the measured data with the calculated results. It is shown how this process can be used to reduce bias in calculated results and reduce the calculated uncertainty on those results. This process is illustrated by application to a PWR fuel assembly.


2018 ◽  
Vol 4 ◽  
pp. 43
Author(s):  
Go Chiba ◽  
Shunsuke Nihira

In the present paper, firstly, we review our previous works on uncertainty quantification (UQ) of reactor physics parameters. This consists of (1) development of numerical tools based on the depletion perturbation theory (DPT), (2) linearity of reactor physics parameters to nuclear data, (3) UQ of decay heat and its reduction, and (4) correlation between decay heat and β-delayed neutrons emission. Secondly, we show results of extensive calculations about UQ on decay heat with several different numerical conditions by the DPT-based capability of a reactor physics code system CBZ.


Author(s):  
Dongli Huang ◽  
Hany S. Abdel-Khalik

This work aims to develop an uncertainty analysis methodology for the propagation and quantification of the effects of nuclear cross-section uncertainties on important core-wide attributes, such as power distribution and core critical eigenvalue. Given the computationally taxing nature of this endeavor, our goal is to develop a methodology capable of preserving the accuracy of brute force sampling techniques for uncertainty quantification while realizing the efficiency of deterministic techniques. To achieve that, a reduced order modeling (ROM) approach is proposed to deal with the enormous size of the uncertainty space, comprising all the cross-section few-group parameters required in core-wide simulation. The idea is to generate a compressed representation of the uncertainty space, as represented by a covariance matrix, that renders sampling techniques computationally a feasible option for quantifying and prioritizing the various sources of uncertainties. While the proposed developments are general to any reactor physics computational sequence, we customize our approach to the NESTLE [1]-TRITON [2] computational sequence, which will serve as a demonstrative tool for the implementation of our approach. NESTLE is a software used for core wide simulation, which relies on the few-group cross-sections to calculate core wide attributes over multiple cycles of depletion. Its input cross-sections are generated using a matrix of conditions evaluated using a lattice physics code, which in our implementation is done using the TRITON software of the ORNL’ SCALE suit. This manuscript presents one of the early steps towards this goal. Specifically, we focus here on the development of the algorithms for determining the reduced dimension of covariance matrix. Numerical experiment using the TRITON software is employed to demonstrate how the reduction is achieved.


2015 ◽  
Vol 123 ◽  
pp. 68-73 ◽  
Author(s):  
M. Salvatores ◽  
G. Aliberti ◽  
G. Palmiotti

Sign in / Sign up

Export Citation Format

Share Document