Effects of controlled release N fertilizers and reduced application rate on nitrous oxide emissions from soybean fields converted from rice paddies

Author(s):  
Hiroyuki Hasukawa ◽  
Yumi Inoda ◽  
Takayuki Takayama ◽  
Kunihiko Takehisa ◽  
Shigeto Sudo ◽  
...  
2016 ◽  
Vol 154 (5) ◽  
pp. 812-827 ◽  
Author(s):  
M. J. BELL ◽  
J. M. CLOY ◽  
C. F. E. TOPP ◽  
B. C. BALL ◽  
A. BAGNALL ◽  
...  

SUMMARYIncreasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.


2015 ◽  
Vol 50 (2) ◽  
pp. 633-642 ◽  
Author(s):  
Shuwei Liu ◽  
Zhiqiang Hu ◽  
Shuang Wu ◽  
Shuqing Li ◽  
Zhaofu Li ◽  
...  

2006 ◽  
Vol 70 (1) ◽  
pp. 235-248 ◽  
Author(s):  
R. F. Grant ◽  
E. Pattey ◽  
T. W. Goddard ◽  
L. M. Kryzanowski ◽  
H. Puurveen

2013 ◽  
Vol 374 (1-2) ◽  
pp. 285-297 ◽  
Author(s):  
Shuwei Liu ◽  
Yaojun Zhang ◽  
Feng Lin ◽  
Ling Zhang ◽  
Jianwen Zou

2008 ◽  
Vol 88 (4) ◽  
pp. 571-584 ◽  
Author(s):  
E. Smith ◽  
R. Gordon ◽  
C. Bourque ◽  
A. Campbell

Surface-applied swine manure has the potential to generate ammonia (NH3), nitrous oxide (N2O) and odour. Field research was conducted in Prince Edward Island to measure the simultaneous emissions of NH3, N2O and odour following the surface-application of swine manure. Manure was applied to a grain stubble field consisting of a sandy loam soil low in pH (5.6–5.9). The effect of manure type (liquid and solid), application rate [conventional/typical rate (1 ×): 30 000-36 000 L ha-1, double (2 ×): 60 000-72 000 L ha-1 and five times (5 ×): 180 000 L ha-1] and rainfall (8–200 mm) before and after liquid manure application were examined. There was no relationship between odour emissions and manure type, application rate and rainfall before and after spreading, due to high variability. Liquid manure (dry matter (DM = 45 g kg-1) reduced NH3 emissions by 32% compared with solid (DM = 350 g kg-1). Increasing application rates enhanced NH3 emissions; increasing the rate by 2 × and 5 × the typical rate increased losses by 62 and 78%, respectively. Applying manure prior to rainfall reduced NH3 emissions by 37%, compared with application after a rainfall. Ammonia and odour emissions were similarly correlated to atmospheric conditions with increased emissions at higher air and soil temperature, net radiation, vapour pressure deficit and windspeed. Nitrous oxide emissions were low in magnitude and showed no correlation to climatic conditions, suggesting that management strategies to reduce both odour and NH3 did not enhance N2O emissions when applied to a moderately acidic soil with low levels of soil nitrate (< 5 mg N kg-1). Our results indicate that for conditions similar to those in this study, there is no trade-off between NH3 and N2O production and more attention should be placed on controlling and reducing odour and NH3 emissions. Key words: Ammonia, nitrous oxide, odour, swine manure, management strategies


2014 ◽  
Vol 60 (No. 1) ◽  
pp. 24-29 ◽  
Author(s):  
T. Šima ◽  
L. Nozdrovický ◽  
K. Krištof ◽  
J. Krupička

The application rate of a nitrogen fertiliser is one of the most important factors that affect the nitrous oxide (N<sub>2</sub>O) flux. Calk ammonium nitrate with 27% nitrogen content was spread by a fertiliser spreader VICON RS-L connected with a tractor Zetor 16145 and incorporated into the soil by a power harrow P&ouml;ttinger Lion 301 six hours after spreading. Monitoring points were selected based on the size of application rate 0, 100, 200 and 300 kg/ha and were measured 7, 14, 21 and 28&nbsp;days after fertiliser application and incorporation into the soil. Nitrous oxide emissions were measured by a photoacoustic field gas monitor INNOVA 1412 with a multipoint sampler INNOVA 1309. Based on the data obtained, there were found statistically significant differences among time intervals and among the size of the application rate at a 95.0% confidence level. Results have shown impacts of the size of fertiliser application rate and time interval after fertilisation on nitrous oxide flux. &nbsp; &nbsp;


2016 ◽  
Vol 56 (3) ◽  
pp. 350 ◽  
Author(s):  
J. Luo ◽  
S. Ledgard ◽  
B. Wise ◽  
S. Lindsey

Animal urine deposited on pastoral soils during grazing is recognised as a dominant source of nitrous oxide (N2O) emissions. The nitrification inhibitor, dicyandiamide (DCD), is a potential mitigation technology to control N2O emissions from urine patches on grazed pastures. One delivery option is to include DCD in animal feed so that the DCD is targeted directly in the urine patch when excreted in the animal urine. The hypothesis tested in the present study was that DCD in urine, excreted by cows that were orally administered with DCD, would have the same effect as DCD added to urine after the urine is excreted. The study also aimed to determine the most effective DCD rate for reducing N2O emissions. Fresh dairy cow urine (700 kg N per ha) was applied to a free-draining silt loam pastoral soil in Waikato, New Zealand, in May (late autumn) or July (winter) of 2014, and was mixed with DCD at rates of 0, 10, 30 and 60 kg/ha. In late autumn, there was an equivalent treatment of urine (containing 60 kg DCD per ha) from DCD-treated cows. A static chamber technique was used to determine gaseous N2O emissions. An annual emission factor (EF3; the percentage of applied urine N lost as N2O-N) of 0.23% or 0.21% was found following late-autumn or winter applications of urine without DCD. Late-autumn application of urine containing DCD from oral administration to cows had the same significant reduction effect on N2O emissions as did DCD that was mixed with urine after excretion, at the equivalent DCD application rate of 60 kg/ha. Application of urine with DCD mixed with the urine after excretion at varying DCD rates showed a significant (P < 0.05) linear decrease in both N2O emissions and EF3 values.


Sign in / Sign up

Export Citation Format

Share Document