ON THE CONNECTION BETWEEN LEVEL FLUCTUATIONS IN THE CASPIAN SEA AND THE ARAL SEA

1975 ◽  
Vol 16 (4) ◽  
pp. 231-239
Author(s):  
S. A. Mayeva ◽  
A. N. Kosarev ◽  
Ye. G. Mayev
Keyword(s):  
Aral Sea ◽  
Author(s):  
Lorant Földváry ◽  
Victor Statov ◽  
Nizamatdin Mamutov

The GRACE gravity satellite mission has provided monthly gravity field solutions for about 15 years enabling a unique opportunity to monitor large scale mass variation processes. By the end of the GRACE, the GRACE-FO mission was launched in order to continue the time series of monthly gravity fields. The two missions are similar in most aspects apart from the improved intersatellite range rate measurements, which is performed with lasers in addition to microwaves. An obvious demand for the geoscientific applications of the monthly gravity field models is to understand the consistency of the models provided by the two missions. This study provides a case-study related consistency investigation of GRACE and GRACE-FO monthly solutions for the Aral Sea region. As the closeness of the Caspian Sea may influence the monthly mass variations of the Aral Sea, it has also been involved in the investigations. According to the results, GRACE-FO models seem to continue the mass variations of the GRACE period properly, therefore their use jointly with GRACE is suggested. Based on the justified characteristics of the gravity anomaly by water volume variations in the case of the Aral Sea, GRACE models for the period March–June 2017 are suggested to be neglected. Though the correlation between water volume and monthly gravity field variations is convincing in the case of the Aral Sea, no such a correlation for the Caspian Sea could have been detected, which suggests to be the consequence of other mass varying processes, may be related to the seismicity of the Caspian Sea area.


2020 ◽  
Vol 20 (2) ◽  
pp. 13
Author(s):  
Nuraini A Manan

Dynasty of Saljuk is a group of Turks originating from the tribe Ghuzz. Dynasty of Saljuk attributed to their ancestors named Saljuk ibn Tuqaq (Dukak). Their home country is located in the northern region of the Caspian sea and the Aral Sea and they embraced Islam at the end of the 4th century H / 10M and more to the Sunni school. The development of the Dynasty of Saljuk was aided by the political situation in the Transoksania region. At that time there was a political rivalry between the Dynasty of Samaniyah and the Dynasty of Khani- yyah. In this competition Saljuk tended to help the Dynasty of Samaniyah. When the Dynasty of Samaniyah was defeated by the Dynasty of Ghaznawi, Saljuk declared independence. Thugrul proclaimed the establishment of the Dynasty of Saljuk. In 432 H/1040 AD this dynasty received recognition from the Abbasid Caliphate in Baghdad. At the time of Thugrul Bek’s leadership, in 1055 CE the Saljuks entered Baghdad in the place of the Buwaihi dynasty. Previously Thugrul managed to seize the area of Marwa and Naisabur from Ghaznawi power, Balkh, Jurjan, Tabaristan, Khawarizm, Ray and Isfahan. This year Thugrul Bek also got the title of the Abbasid caliph with Rukh al-Daulah Yamin Amir al-Muminin. Although Baghdad can be controlled, but not used as a center of government. Thugrul Bek chose the city of Naisabur and then the city of Ray as the center of govern- ment. These earlier dynasties broke away, having been conquered by the Saljuq dynasty again recognizing the position of Baghdad. In fact they established the integrity and security of the Abbasids.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0244615
Author(s):  
Galina A. Eroshenko ◽  
Nikolay V. Popov ◽  
Zhanna V. Al’khova ◽  
Lyubov M. Kukleva ◽  
Alina N. Balykova ◽  
...  

According to the whole genome SNP analysis of 38 Yersinia pestis strains isolated in the foci of the Northern Caspian and Northern Aral Sea regions in the 20th–early 21st centuries, between 1912 and 2015, the spatial and temporal structure of the 2.MED population of a medieval biovar in this region was determined. A phylogenetic branch 2.MED4 was identified which preceded the 2.MED1 branch that diverged later. 2.MED1 strains became the etiological agent of high-mortality plague outbreaks that occurred in the Northern Caspian region at the beginning of the 20th century. Later in the 20th century, the 2.MED1 branch became widespread in the Caspian Sea region, Caucasus, and vast areas of Central Asia. Based on the data of phylogenetic analysis, as well as epidemiological and epizootiological data, we reconstructed the paths of spread of the 2.MED1 branch in the Northern Caspian Sea region and in the Northern subzone of the Central Asian deserts. It is shown, that the reason for the activation of plague foci in the Northern Caspian region in the second half of the 20th century after a long inter-epizootic period caused by cyclical climate warming was the return of 2.MED1 from the foci of the Northern Aral Sea region. This led to the formation of stable plague foci in the Northern Caspian Sea region and Pre-Caucasus, which manifested epizootic activity in the second half of the 20th and early 21st centuries.


Author(s):  
Edward Vladimirovich Nikitin

Shallow coastal waters of the Volga river is a flooded feeding area for fish juveniles of nonmigratory fish species. There takes place annual downstream migration of fluvial anadromous fish species from spawning grounds of the Volga river to the Northern Caspian Sea. The most important factors determining the number and qualitative characteristics of fry fishes are the level of the Caspian Sea (currently having a tendency to the lowering), hydrological and thermal regimes of the Volga river. Researches were carried out in definite periods of time. In the summer-autumn period of 2012 fry fishes were presented by 19 species (13 of them were commercial species), which belonged to 9 families. The article gives data on all the commercial fish species. In the first decade of July the maximum number of fry fish was registered in the western part of the Volga outfall offshore - in box 247 (19.86 mln specimens/km2), in the eastern part - in box 142 (20.4 mln specimens/km2). The most populous were roach, red-eye, silver bream and bream; size-weight characteristics were better in the areas remoted from the Volga delta. In the third decade of July the quantitative indicators of fry fish on these areas decreased, size-weight characteristics greatly increased. In the second decade of October in the western part of the seaside there were registered increased pre-wintering concentrations of fish juveniles, their qualitative indicators increased, which is evidence to favorable feeding conditions in 2012.


2020 ◽  
Vol 324 (2) ◽  
pp. 262-272
Author(s):  
I.V. Doronin ◽  
T.N. Dujsebayeva ◽  
K.M. Akhmedenov ◽  
A.G. Bakiev ◽  
K.N. Plakhov

The article specifies the type locality of the Steppe Ribbon Racer. The holotype Coluber (Taphrometopon) lineolatus Brandt, 1838 is stored in the reptile collection of the Zoological Institute of the Russian Academy of Sciences (ZISP No 2042). Literature sources provide different information about the type locality. A mistake has been made in the title of the work with the original species description: the western coast of the sea was indicated instead of the eastern one. The place of capture was indicated as “M. Caspium” (Caspian Sea) on the label and in the reptile inventory book of the Zoological Museum of the Academy of Sciences. The specimen was sent to the museum by G.S. Karelin. The “1842” indicated on the labels and in the inventory book cannot be the year of capture of the type specimen, just as the “1837” indicated by A.M. Nikolsky. In 1837, Karelin was in Saint Petersburg and in 1842 in Siberia. Most likely, 1837 is the year when the collection arrived at the Museum, and 1842 is the year when the information about the specimen was recorded in the inventory book (catalog) of the Zoological Museum of the Academy of Sciences. In our opinion, the holotype was caught in 1932. From Karelin’s travel notes of the expedition to the Caspian Sea in 1832, follows that the snake was recorded in two regions adjacent to the eastern coast of the Caspian Sea – Ungoza Mountain (“Mangyshlak Mountains”) and site of the Western Chink of Ustyurt between Zhamanairakty and Kyzyltas Mountains (inclusive) on the northeast coast of Kaydak Sor (“Misty Mountains”). In our article, Karelin’s route to the northeastern coast of the Caspian Sea in 1832 and photographs of these localities are given. The type locality of Psammophis lineolatus (Brandt, 1838) should be restricted to the Mangystau Region of the Kazakhstan: Ungoza Mountain south of Sarytash Gulf, Mangystau (Mangyshlak) Penninsula (44°26´ N, 51°12´ E).


Author(s):  
Nepomenko Leonid ◽  
◽  
Popova Natalia ◽  
Zubanov Stepan ◽  
Ostrovskaya Elena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document